Skip to main content

Advertisement

Log in

Hemodynamic effects of left atrial appendage occlusion

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

Percutaneous left atrial appendage occlusion (LAAO) devices have emerged as alternatives to anticoagulation for embolic stroke prevention in patients with non-valvular atrial fibrillation (NVAF). The left atrial appendage is known to produce vasoactive neuroendocrine hormones involved in cardiovascular homeostasis. The hemodynamic impact of LAA occlusion on cardiac function remains poorly characterized.

Methods

This is a single-center, retrospective study of sixty-seven consecutive patients who received LAAO utilizing the WATCHMAN device from May 2017 to June 2019. All patients received a comprehensive 2D transthoracic echocardiogram (TTE) prior to the procedure and a post-procedural TTE. 2D echocardiographic pre-/post-procedural measurements including left ventricular ejection fraction, tricuspid regurgitation, estimated pulmonary artery pressure, diastolic parameters, and left atrial and right ventricular strain were statistically analyzed using the paired t-test.

Results

Seventy percent of study patients were male with an overall mean age of 73.0 ± 9.0 years. Analysis of post-procedural LAAO revealed statistically significant improvement in left ventricular ejection fraction (52.4 ± 12.6 vs. 56.7 ± 12.7, p < 0.001), an increase in mitral E/e′ (14.1 ± 6.5 vs. 18.3 ± 10.8, p < 0.001), and a decrease right ventricular global longitudinal strain (RVGLS) (− 17.5 ± 4.6 vs. − 19.6 ± 5.7, p = 0.027) as compared to pre-procedural TTE. Peak left atrial longitudinal strain (PALS) improved post-LAAO (20.6 ± 12.2 to 22.9 ± 12.9, p = 0.040) with adjustment for cardiac arrhythmias. Post-LAAO, heart failure hospitalizations occurred in 23.9% of patients.

Conclusions

Percutaneous LAAO results in real-time atrial and ventricular hemodynamic changes as assessed by echocardiographic evaluation of LV filling pressures (E/e′), PALS, RVGLS, and LVEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, Gillum RF, et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation. 2014;129(8):837–47.

    Article  Google Scholar 

  2. Regazzoli D, Ancona F, Trevisi N, Guarracini F, Radinovic A, Oppizzi M, Agricola E, et al. Left atrial appendage: physiology, pathology, and role as a therapeutic target. Biomed Res Int. 2015;2015:205013.

    Article  Google Scholar 

  3. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, Akar JG, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017;14(10):e275–444.

    Article  Google Scholar 

  4. Abrich V, Sorajja D. Evolution of left atrial appendage exclusion. International Journal of Heart Rhythm. 2017;2(1):22–8.

    Article  Google Scholar 

  5. Reddy VY, Doshi SK, Kar S, Gibson DN, Price MJ, Huber K, Horton RP, et al. 5-year outcomes after left atrial appendage closure: from the PREVAIL and PROTECT AF trials. J Am Coll Cardiol. 2017;70(24):2964–75.

    Article  Google Scholar 

  6. Romero J, Natale A, L DIB. Left atrial appendage morphology and physiology: "the missing piece in the puzzle". J Cardiovasc Electrophysiol. 2015.

  7. Hoit BD, Shao Y, Tsai LM, Patel R, Gabel M, Walsh RA. Altered left atrial compliance after atrial appendectomy. Influence on left atrial and ventricular filling. Circ Res. 1993;72(1):167–175.

  8. Melduni RM, Schaff HV, Lee HC, Gersh BJ, Noseworthy PA, Bailey KR, Ammash NM, et al. Impact of left atrial appendage closure during cardiac surgery on the occurrence of early postoperative atrial fibrillation, stroke, and mortality: a propensity score-matched analysis of 10 633 patients. Circulation. 2017;135(4):366–78.

    Article  Google Scholar 

  9. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17(12):1321–60.

    Article  Google Scholar 

  10. Mobius-Winkler S, Sandri M, Mangner N, Lurz P, Dahnert I, Schuler G. The WATCHMAN left atrial appendage closure device for atrial fibrillation. J Vis Exp. 2012(60).

  11. Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC, Horton K, et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(1):1–64.

    Article  Google Scholar 

  12. Castrichini M, Manca P, Nuzzi V, Barbati G, De Luca A, Korcova R, Stolfo D, et al. Sacubitril/valsartan induces global cardiac reverse remodeling in long-lasting heart failure with reduced ejection fraction: standard and advanced echocardiographic evidences. J Clin Med. 2020;9(4).

  13. Tabata T, Oki T, Yamada H, Iuchi A, Ito S, Hori T, Kitagawa T, et al. Role of left atrial appendage in left atrial reservoir function as evaluated by left atrial appendage clamping during cardiac surgery. Am J Cardiol. 1998;81(3):327–32.

    Article  CAS  Google Scholar 

  14. Tabata T, Oki T, Yamada H, Abe M, Onose Y, Thomas JD. Relationship between left atrial appendage function and plasma concentration of atrial natriuretic peptide. Eur J Echocardiogr. 2000;1(2):130–7.

    Article  CAS  Google Scholar 

  15. Ballermann BJ, Brenner BM. Atrial natriuretic peptide and the kidney. Am J Kidney Dis. 1987;10(1 Suppl 1):7–12.

    CAS  PubMed  Google Scholar 

  16. Kappagoda CT, Linden RJ, Snow HM. The effect of distending the atrial appendages on urine flow in the dog. J Physiol. 1972;227(1):233–42.

    Article  CAS  Google Scholar 

  17. Chapeau C, Gutkowska J, Schiller PW, Milne RW, Thibault G, Garcia R, Genest J, et al. Localization of immunoreactive synthetic atrial natriuretic factor (ANF) in the heart of various animal species. J Histochem Cytochem. 1985;33(6):541–50.

    Article  CAS  Google Scholar 

  18. Hanna IR, Kolm P, Martin R, Reisman M, Gray W, Block PC. Left atrial structure and function after percutaneous left atrial appendage transcatheter occlusion (PLAATO): six-month echocardiographic follow-up. J Am Coll Cardiol. 2004;43(10):1868–72.

    Article  Google Scholar 

  19. Lakkireddy D, Turagam M, Afzal MR, Rajasingh J, Atkins D, Dawn B, Di Biase L, et al. Left atrial appendage closure and systemic homeostasis: the LAA HOMEOSTASIS Study. J Am Coll Cardiol. 2018;71(2):135–44.

    Article  Google Scholar 

  20. Coisne A, Pilato R, Brigadeau F, Klug D, Marquie C, Souissi Z, Richardson M, et al. Percutaneous left atrial appendage closure improves left atrial mechanical function through Frank-Starling mechanism. Heart Rhythm. 2017;14(5):710–6.

    Article  Google Scholar 

  21. Ijuin S, Hamadanchi A, Haertel F, Baez L, Schulze PC, Franz M, Moebius-Winkler S. Improvement in left atrial strain among patients undergoing percutaneous left atrial appendage closure. J Cardiovasc Echogr. 2020;30(1):15–21.

    Article  Google Scholar 

  22. Jalal Z, Iriart X, Dinet ML, Corneloup O, Pillois X, Cochet H, Thambo JB. Evaluation of left atrial remodelling following percutaneous left atrial appendage closure. J Geriatr Cardiol. 2017;14(8):496–500.

    PubMed  PubMed Central  Google Scholar 

  23. Nauta JF, Hummel YM, van der Meer P, Lam CSP, Voors AA, van Melle JP. Correlation with invasive left ventricular filling pressures and prognostic relevance of the echocardiographic diastolic parameters used in the 2016 ESC heart failure guidelines and in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart failure with preserved ejection fraction. Eur J Heart Fail. 2018;20(9):1303–11.

    Article  Google Scholar 

  24. Hummel YM, Liu LCY, Lam CSP, Fonseca-Munoz DF, Damman K, Rienstra M, van der Meer P, et al. Echocardiographic estimation of left ventricular and pulmonary pressures in patients with heart failure and preserved ejection fraction: a study utilizing simultaneous echocardiography and invasive measurements. Eur J Heart Fail. 2017;19(12):1651–60.

    Article  Google Scholar 

  25. Matsushita K, Minamishima T, Goda A, Ishiguro H, Kosho H, Sakata K, Satoh T, et al. Comparison of the reliability of E/E’ to estimate pulmonary capillary wedge pressure in heart failure patients with preserved ejection fraction versus those with reduced ejection fraction. Int J Cardiovasc Imaging. 2015;31(8):1497–502.

    Article  Google Scholar 

  26. Kasner M, Westermann D, Steendijk P, Gaub R, Wilkenshoff U, Weitmann K, Hoffmann W, et al. Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation. 2007;116(6):637–47.

    Article  Google Scholar 

  27. Schwartz RS, Holmes DR, Van Tassel RA, Hauser R, Henry TD, Mooney M, Matthews R, et al. Left atrial appendage obliteration: mechanisms of healing and intracardiac integration. JACC Cardiovasc Interv. 2010;3(8):870–7.

    Article  Google Scholar 

  28. Badano LP, Kolias TJ, Muraru D, Abraham TP, Aurigemma G, Edvardsen T, D’Hooge J, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2018;19(6):591–600.

    Article  Google Scholar 

  29. Donal E, Galli E, Schnell F. Left atrial strain: a must or a plus for routine clinical practice? Circ Cardiovasc Imaging. 2017;10(10).

  30. Donal E, Lip GY, Galderisi M, Goette A, Shah D, Marwan M, Lederlin M, et al. EACVI/EHRA Expert Consensus Document on the role of multi-modality imaging for the evaluation of patients with atrial fibrillation. Eur Heart J Cardiovasc Imaging. 2016;17(4):355–83.

    Article  Google Scholar 

  31. Singh A, Addetia K, Maffessanti F, Mor-Avi V, Lang RM. LA Strain for categorization of LV diastolic dysfunction. JACC Cardiovasc Imaging. 2017;10(7):735–43.

    Article  Google Scholar 

  32. Singh A, Medvedofsky D, Mediratta A, Balaney B, Kruse E, Ciszek B, Shah AP, et al. Peak left atrial strain as a single measure for the non-invasive assessment of left ventricular filling pressures. Int J Cardiovasc Imaging. 2019;35(1):23–32.

    Article  Google Scholar 

  33. La Meir M, Gelsomino S, Luca F, Pison L, Rao CM, Wellens F, Maessen JG. Improvement of left atrial function and left atrial reverse remodeling after minimally invasive radiofrequency ablation evaluated by 2-dimensional speckle tracking echocardiography. J Thorac Cardiovasc Surg. 2013;146(1):72–7.

    Article  Google Scholar 

  34. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39 e14.

  35. Lu KJ, Chen JX, Profitis K, Kearney LG, DeSilva D, Smith G, Ord M, et al. Right ventricular global longitudinal strain is an independent predictor of right ventricular function: a multimodality study of cardiac magnetic resonance imaging, real time three-dimensional echocardiography and speckle tracking echocardiography. Echocardiography. 2015;32(6):966–74.

    Article  Google Scholar 

  36. Houard L, Benaets MB, de Meester de Ravenstein C, Rousseau MF, Ahn SA, Amzulescu MS, Roy C, et al. Additional prognostic value of 2D right ventricular speckle-tracking strain for prediction of survival in heart failure and reduced ejection fraction: a comparative study with cardiac magnetic resonance. JACC Cardiovasc Imaging. 2019;12(12):2373–2385.

  37. Carluccio E, Biagioli P, Alunni G, Murrone A, Zuchi C, Coiro S, Riccini C, et al. Prognostic value of right ventricular dysfunction in heart failure with reduced ejection fraction: superiority of longitudinal strain over tricuspid annular plane systolic excursion. Circ Cardiovasc Imaging. 2018;11(1):e006894.

    Article  Google Scholar 

  38. Shukla M, Park JH, Thomas JD, Delgado V, Bax JJ, Kane GC, Howlett JG, et al. Prognostic value of right ventricular strain using speckle-tracking echocardiography in pulmonary hypertension: a systematic review and meta-analysis. Can J Cardiol. 2018;34(8):1069–78.

    Article  Google Scholar 

  39. Lejeune S, Roy C, Ciocea V, Slimani A, de Meester C, Amzulescu M, Pasquet A, et al. Right ventricular global longitudinal strain and outcomes in heart failure with preserved ejection fraction. J Am Soc Echocardiogr. 2020;33(8):973–984 e972.

  40. Carluccio E, Biagioli P, Lauciello R, Zuchi C, Mengoni A, Bardelli G, Alunni G, et al. Superior prognostic value of right ventricular free wall compared to global longitudinal strain in patients with heart failure. J Am Soc Echocardiogr. 2019;32(7):836–844 e831.

  41. Hamada-Harimura Y, Seo Y, Ishizu T, Nishi I, Machino-Ohtsuka T, Yamamoto M, Sugano A, et al. Incremental prognostic value of right ventricular strain in patients with acute decompensated heart failure. Circ Cardiovasc Imaging. 2018;11(10):e007249.

    Article  Google Scholar 

  42. Ross Agner BF, Katz MG, Williams ZR, Dixen U, Jensen GB, Schwarz KQ. Left ventricular systolic function assessed by global longitudinal strain is impaired in atrial fibrillation compared to sinus rhythm. J Atr Fibrillation. 2017;10(4):1437.

    Article  Google Scholar 

  43. Carluccio E, Biagioli P, Mengoni A, Francesca Cerasa M, Lauciello R, Zuchi C, Bardelli G, et al. Left atrial reservoir function and outcome in heart failure with reduced ejection fraction. Circ Cardiovasc Imaging. 2018;11(11):e007696.

    Article  Google Scholar 

  44. Freeman JV, Varosy P, Price MJ, Slotwiner D, Kusumoto FM, Rammohan C, Kavinsky CJ, et al. The NCDR left atrial appendage occlusion registry. J Am Coll Cardiol. 2020;75(13):1503–18.

    Article  Google Scholar 

Download references

Funding

This study was funded by an internal research grant provided by the Lifespan Cardiovascular Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esseim Sharma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, E., Apostolidou, E., Sheikh, W. et al. Hemodynamic effects of left atrial appendage occlusion. J Interv Card Electrophysiol 64, 349–357 (2022). https://doi.org/10.1007/s10840-021-01006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-021-01006-x

Keywords

Navigation