Skip to main content

Advertisement

Log in

Heart failure as a substrate and trigger for ventricular tachycardia

  • Reviews
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Heart failure (HF) is a major cause of morbidity and mortality with more than 5.1 million individuals affected in the USA. Ventricular tachyarrhythmias (VAs) including ventricular tachycardia and ventricular fibrillation are common in patients with heart failure. The pathophysiology of these mechanisms as well as the contribution of heart failure to the genesis of these arrhythmias is complex and multifaceted. Myocardial hypertrophy and stretch with increased preload and afterload lead to shortening of the action potential at early repolarization and lengthening of the action potential at final repolarization which can result in re-entrant ventricular tachycardia. Myocardial fibrosis and scar can create the substrate for re-entrant ventricular tachycardia. Altered calcium handling in the failing heart can lead to the development of proarrhythmic early and delayed after depolarizations. Various medications used in the treatment of HF such as loop diuretics and angiotensin converting enzyme inhibitors have not demonstrated a reduction in sudden cardiac death (SCD); however, beta-blockers (BB) are effective in reducing mortality and SCD. Amongst patients who have HF with reduced ejection fraction, the angiotensin receptor-neprilysin inhibitor (sacubitril/valsartan) has been shown to reduce cardiovascular mortality, specifically by reducing SCD, as well as death due to worsening HF. Implantable cardioverter-defibrillator (ICD) implantation in HF patients reduces the risk of SCD; however, subsequent mortality is increased in those who receive ICD shocks. Prophylactic ICD implantation reduces death from arrhythmia but does not reduce overall mortality during the acute post-myocardial infarction (MI) period (less than 40 days), for those with reduced ejection fraction and impaired autonomic dysfunction. Furthermore, although death from arrhythmias is reduced, this is offset by an increase in the mortality from non-arrhythmic causes. This article provides a review of the aforementioned mechanisms of arrhythmogenesis in heart failure; the role and impact of HF therapy such as cardiac resynchronization therapy (CRT), including the role, if any, of CRT-P and CRT-D in preventing VAs; the utility of both non-invasive parameters as well as multiple implant-based parameters for telemonitoring in HF; and the effect of left ventricular assist device implantation on VAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey de Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147–239. https://doi.org/10.1016/J.JACC.2013.05.019.

    Article  PubMed  Google Scholar 

  2. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2016;37:2129–200. https://doi.org/10.1093/eurheartj/ehw128.

    Article  PubMed  Google Scholar 

  3. Saxon LA, Bristow MR, Boehmer J, Krueger S, Kass DA, de Marco T, et al. Predictors of sudden cardiac death and appropriate shock in the comparison of medical therapy, pacing, and defibrillation in heart failure (COMPANION) trial. Circulation. 2006;114:2766–72. https://doi.org/10.1161/CIRCULATIONAHA.106.642892.

    Article  PubMed  Google Scholar 

  4. Zabel M, Portnoy S, Franz MR. Effect of sustained load on dispersion of ventricular repolarization and conduction time in the isolated intact rabbit heart. J Cardiovasc Electrophysiol. 1996;7:9–16.

    CAS  PubMed  Google Scholar 

  5. Franz MR, Cima R, Wang D, Profitt D, Kurz R. Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation. 1992;86:968–78. https://doi.org/10.1161/01.CIR.86.3.968.

    Article  CAS  PubMed  Google Scholar 

  6. Nishimura S, Kawai Y, Nakajima T, HOSOYA Y, FUJITA H, KATOH M, et al. Membrane potential of rat ventricular myocytes responds to axial stretch in phase, amplitude and speed-dependent manners. Cardiovasc Res. 2006;72:403–11. https://doi.org/10.1016/j.cardiores.2006.08.011.

    Article  CAS  PubMed  Google Scholar 

  7. Hansen DE, Craig CS, Hondeghem LM. Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation. 1990;81:1094–105.

    CAS  PubMed  Google Scholar 

  8. Franz MR, Burkhoff D, Yue DT, Sagawa K. Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts. Cardiovasc Res. 1989;23:213–23.

    CAS  PubMed  Google Scholar 

  9. Babuty D, Lab MJ. Mechanoelectric contributions to sudden cardiac death. Cardiovasc Res. 2001;50:270–9.

    CAS  PubMed  Google Scholar 

  10. Reiter MJ, Stromberg KD, Whitman TA, Adamson PB, Benditt DG, Gold MR. Influence of intracardiac pressure on spontaneous ventricular arrhythmias in patients with systolic heart failure: insights from the REDUCEhf trial. Circ Arrhythmia Electrophysiol. 2013;6:272–8. https://doi.org/10.1161/CIRCEP.113.000223.

    Article  Google Scholar 

  11. JANSE MJ, VERMEULEN JT, OPTHOF T, et al. Arrhythmogenesis in heart failure. J Cardiovasc Electrophysiol. 2001;12:496–9. https://doi.org/10.1046/j.1540-8167.2001.00496.x.

    Article  CAS  PubMed  Google Scholar 

  12. Cinca J, Warren M, Carreño A, et al. Changes in myocardial electrical impedance induced by coronary artery occlusion in pigs with and without preconditioning: correlation with local ST-segment potential and ventricular arrhythmias. Circulation. 1997;96:3079–86.

    CAS  PubMed  Google Scholar 

  13. Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev. 1989;69:1049–169. https://doi.org/10.1152/physrev.1989.69.4.1049.

    Article  CAS  PubMed  Google Scholar 

  14. Smith WT, Fleet WF, Johnson TA, Engle CL, Cascio WE. The Ib phase of ventricular arrhythmias in ischemic in situ porcine heart is related to changes in cell-to-cell electrical coupling. Experimental Cardiology Group, University of North Carolina. Circulation. 1995;92:3051–60.

    PubMed  Google Scholar 

  15. Pogwizd SM, Hoyt RH, Saffitz JE, et al Reentrant and focal mechanisms underlying ventricular tachycardia in the human heart, 1992.

    Google Scholar 

  16. Kawara T, Derksen R, de Groot JR, Coronel R, Tasseron S, Linnenbank ÁC, et al. Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation. 2001;104:3069–75.

    CAS  PubMed  Google Scholar 

  17. de Bakker JM, van Capelle FJ, Janse MJ, Tasseron S, Vermeulen JT, de Jonge N, et al. Slow conduction in the infarcted human heart. “Zigzag” course of activation. Circulation. 1993;88:915–26.

    PubMed  Google Scholar 

  18. Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Europace. 2019;21:1143–4. https://doi.org/10.1093/europace/euz132.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gardner PI, Ursell PC, Fenoglio JJ, Wit AL. Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarcts. Circulation. 1985;72:596–611.

    CAS  PubMed  Google Scholar 

  20. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114:1004–21. https://doi.org/10.1161/CIRCRESAHA.113.302549.

    CAS  PubMed  Google Scholar 

  21. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res. 2004;95:754–63. https://doi.org/10.1161/01.RES.0000145047.14691.db.

    Article  CAS  PubMed  Google Scholar 

  22. SIMOES M, Barthel P, Matsunari I, et al. Presence of sympathetically denervated but viable myocardium and its electrophysiologic correlates after early revascularised, acute myocardial infarction. Eur Heart J. 2004;25:551–7. https://doi.org/10.1016/j.ehj.2004.02.016.

    Article  PubMed  Google Scholar 

  23. Fallavollita JA, Heavey BM, Luisi AJ, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63:141–9. https://doi.org/10.1016/J.JACC.2013.07.096.

    Article  PubMed  Google Scholar 

  24. Cao JM, Fishbein MC, Han JB, Lai WW, Lai AC, Wu TJ, et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000;101:1960–9.

    CAS  PubMed  Google Scholar 

  25. Chen P, Chen LS, Cao J-M, Sharifi B, Karagueuzian HS, Fishbein MC. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res. 2001;50:409–16. https://doi.org/10.1016/S0008-6363(00)00308-4.

    Article  CAS  PubMed  Google Scholar 

  26. Cao JM, Chen LS, KenKnight BH, et al. Nerve sprouting and sudden cardiac death. Circ Res. 2000;86:816–21.

    CAS  PubMed  Google Scholar 

  27. Meredith IT, Eisenhofer G, Lambert GW, Dewar EM, Jennings GL, Esler MD. Cardiac sympathetic nervous activity in congestive heart failure. Evidence for increased neuronal norepinephrine release and preserved neuronal uptake. Circulation. 1993;88:136–45. https://doi.org/10.1161/01.CIR.88.1.136.

    Article  CAS  PubMed  Google Scholar 

  28. Meredith IT, Broughton A, Jennings GL, Esler MD. Evidence of a selective increase in cardiac sympathetic activity in patients with sustained ventricular arrhythmias. N Engl J Med. 1991;325:618–24. https://doi.org/10.1056/NEJM199108293250905.

    Article  CAS  PubMed  Google Scholar 

  29. Aggarwal A, Esler MD, Socratous F, Kaye DM. Evidence for functional presynaptic alpha-2 adrenoceptors and their down-regulation in human heart failure. J Am Coll Cardiol. 2001;37:1246–51.

    CAS  PubMed  Google Scholar 

  30. Lerman A, Kubo SH, Tschumperlin LK, Burnett JC. Plasma endothelin concentrations in humans with end-stage heart failure and after heart transplantation. J Am Coll Cardiol. 1992;20:849–53.

    CAS  PubMed  Google Scholar 

  31. McMurray JJ, Ray SG, Abdullah I, et al. Plasma endothelin in chronic heart failure. Circulation. 1992;85:1374–9. https://doi.org/10.1161/01.CIR.85.4.1374.

    Article  CAS  PubMed  Google Scholar 

  32. Rich S, McLaughlin VV. Endothelin receptor blockers in cardiovascular disease. Circulation. 2003;108:2184–90. https://doi.org/10.1161/01.CIR.0000094397.19932.78.

    Article  CAS  PubMed  Google Scholar 

  33. Pacher R, Stanek B, Hülsmann M, Koller-Strametz J, Berger R, Schuller M, et al. Prognostic impact of big endothelin-1 plasma concentrations compared with invasive hemodynamic evaluation in severe heart failure. J Am Coll Cardiol. 1996;27:633–41.

    CAS  PubMed  Google Scholar 

  34. Wei CM, Lerman A, Rodeheffer RJ, McGregor CG, Brandt RR, Wright S, et al. Endothelin in human congestive heart failure. Circulation. 1994;89:1580–6.

    CAS  PubMed  Google Scholar 

  35. Duru F, Barton M, Lüscher TF, Candinas R. Endothelin and cardiac arrhythmias: do endothelin antagonists have a therapeutic potential as antiarrhythmic drugs? Cardiovasc Res. 2001;49:272–80. https://doi.org/10.1016/S0008-6363(00)00263-7.

    Article  CAS  PubMed  Google Scholar 

  36. Tóth M, Solti F, Merkely B, Kékesi V, Horkay F, Szokodi I, et al. Ventricular tachycardias induced by intracoronary administration of endothelin-1 in dogs. J Cardiovasc Pharmacol. 1995;26(Suppl 3):S153–5.

    PubMed  Google Scholar 

  37. Yorikane R, Koike H, Miyake S. Electrophysiological effects of endothelin-1 on canine myocardial cells. J Cardiovasc Pharmacol. 1991;17(Suppl 7):S159–62.

    CAS  PubMed  Google Scholar 

  38. YORIKANE R, KOIKE H. The arrhythmogenic action of endothelin in rats. Jpn J Pharmacol. 1990;53:259–63. https://doi.org/10.1254/jjp.53.259.

    Article  CAS  PubMed  Google Scholar 

  39. Yorikane R, Shiga H, Miyake S, Koike H. Evidence for direct arrhythmogenic action of endothelin. Biochem Biophys Res Commun. 1990;173:457–62. https://doi.org/10.1016/S0006-291X(05)81080-0.

    Article  CAS  PubMed  Google Scholar 

  40. Szokodi I, Horkay F, Merkely B, Solti F, Gellér L, Kiss P, et al. Intrapericardial infusion of endothelin-1 induces ventricular arrhythmias in dogs. Cardiovasc Res. 1998;38:356–64.

    CAS  PubMed  Google Scholar 

  41. Szabó T, Gellér L, Merkely B, Selmeci L, Juhász-Nagy A, Solti F. Investigating the dual nature of endothelin-1: ischemia or direct arrhythmogenic effect? Life Sci. 2000;66:2527–41. https://doi.org/10.1016/S0024-3205(00)00587-7.

    Article  PubMed  Google Scholar 

  42. Sakai S, Miyauchi T, Kobayashi M, Yamaguchi I, Goto K, Sugishita Y. Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature. 1996;384:353–5. https://doi.org/10.1038/384353a0.

    Article  CAS  PubMed  Google Scholar 

  43. Mulder P, Richard V, Derumeaux G, et al. Role of endogenous endothelin in chronic heart failure: effect of long-term treatment with an endothelin antagonist on survival, hemodynamics, and cardiac remodeling. Circulation. 1997;96:1976–82.

    CAS  PubMed  Google Scholar 

  44. Mishima T, Tanimura M, Suzuki G, Todor A, Sharov VG, Goldstein S, et al. Effects of long-term therapy with bosentan on the progression of left ventricular dysfunction and remodeling in dogs with heart failure. J Am Coll Cardiol. 2000;35:222–9.

    CAS  PubMed  Google Scholar 

  45. Fraccarollo D, Hu K, Galuppo P, Gaudron P, Ertl G. Chronic endothelin receptor blockade attenuates progressive ventricular dilation and improves cardiac function in rats with myocardial infarction: possible involvement of myocardial endothelin system in ventricular remodeling. Circulation. 1997;96:3963–73.

    CAS  PubMed  Google Scholar 

  46. Clozel M, Qiu C, Qiu C-S, Hess P, Clozel JP. Short-term endothelin receptor blockade with tezosentan has both immediate and long-term beneficial effects in rats with myocardial infarction. J Am Coll Cardiol. 2002;39:142–7.

    CAS  PubMed  Google Scholar 

  47. McMurray JJV, Teerlink JR, Cotter G, et al. Effects of tezosentan on symptoms and clinical outcomes in patients with acute heart failure: the VERITAS randomized controlled trials. JAMA. 2007;298:2009–19. https://doi.org/10.1001/jama.298.17.2009.

    Article  CAS  PubMed  Google Scholar 

  48. Cleland JGF, Coletta AP, Freemantle N, Velavan P, Tin L, Clark AL. Clinical trials update from the American College of Cardiology meeting: CARE-HF and the remission of heart failure, Women’s Health Study, TNT, COMPASS-HF, VERITAS, CANPAP, PEECH and PREMIER. Eur J Heart Fail. 2005;7:931–6. https://doi.org/10.1016/j.ejheart.2005.04.002.

    Article  PubMed  Google Scholar 

  49. Packer M, McMurray JJV, Krum H, et al. Long-term effect of endothelin receptor antagonism with bosentan on the morbidity and mortality of patients with severe chronic heart failure. JACC Hear Fail. 2017;5:317–26. https://doi.org/10.1016/j.jchf.2017.02.021.

    Article  Google Scholar 

  50. Lüscher TF, Enseleit F, Pacher R, et al. Hemodynamic and neurohumoral effects of selective endothelin A (ET(A)) receptor blockade in chronic heart failure: the Heart Failure ET(A) Receptor Blockade Trial (HEAT). Circulation. 2002;106:2666–72. https://doi.org/10.1161/01.CIR.0000038497.80095.E1.

    Article  CAS  PubMed  Google Scholar 

  51. Anand I, McMurray J, Cohn JN, Konstam MA, Notter T, Quitzau K, et al. Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the EndothelinA Receptor Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-controlled trial. Lancet (London, England). 2004;364:347–54. https://doi.org/10.1016/S0140-6736(04)16723-8.

    Article  CAS  Google Scholar 

  52. Pogwizd SM, McKenzie JP, Cain ME. Mechanisms underlying spontaneous and induced ventricular arrhythmias in patients with idiopathic dilated cardiomyopathy. Circulation. 1998;98:2404–14.

    CAS  PubMed  Google Scholar 

  53. Beuckelmann DJ, Näbauer M, Erdmann E. Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res. 1993;73:379–85.

    CAS  PubMed  Google Scholar 

  54. Kääb S, Nuss HB, Chiamvimonvat N, et al. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res. 1996;78:262–73.

    PubMed  Google Scholar 

  55. Kääb S, Dixon J, Duc J, et al. Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation. 1998;98:1383–93.

    PubMed  Google Scholar 

  56. Wang Y, Hill JA. Electrophysiological remodeling in heart failure. J Mol Cell Cardiol. 2010;48:619–32. https://doi.org/10.1016/j.yjmcc.2010.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsuji Y, Opthof T, Kamiya K, et al. Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle. Cardiovasc Res. 2000;48:300–9.

    CAS  PubMed  Google Scholar 

  58. Li G-R, Lau C-P, Ducharme A, Tardif JC, Nattel S. Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. Am J Physiol Circ Physiol. 2002;283:H1031–41. https://doi.org/10.1152/ajpheart.00105.2002.

    Article  CAS  Google Scholar 

  59. Pogwizd SM, Schlotthauer K, Li L, et al 2019 Arrhythmogenesis and contractile dysfunction in heart failure roles of sodium-calcium exchange, inward rectifier potassium current, and residual β-adrenergic responsiveness.

    Google Scholar 

  60. Akar FG, Rosenbaum DS. Transmural electrophysiological heterogeneities underlying arrhythmogenesis in heart failure. Circ Res. 2003;93:638 LP–645.

    Google Scholar 

  61. Severs NJ, Bruce AF, Dupont E, Rothery S. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res. 2008;80:9–19. https://doi.org/10.1093/cvr/cvn133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Danik SB, Liu F, Zhang J, Suk HJ, Morley GE, Fishman GI, et al. Modulation of cardiac gap junction expression and arrhythmic susceptibility. Circ Res. 2004;95:1035–41. https://doi.org/10.1161/01.RES.0000148664.33695.2a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thomas SA, Schuessler RB, Berul CI, et al 2019 Disparate effects of deficient expression of connexin43 on atrial and ventricular conduction evidence for chamber-specific molecular determinants of conduction.

    Google Scholar 

  64. Wiegerinck RF, van Veen TAB, Belterman CN, Schumacher CA, Noorman M, de Bakker JMT, et al. Transmural dispersion of refractoriness and conduction velocity is associated with heterogeneously reduced connexin43 in a rabbit model of heart failure. Hear Rhythm. 2008;5:1178–85. https://doi.org/10.1016/j.hrthm.2008.04.026.

    Article  Google Scholar 

  65. Ai X, Pogwizd SM. Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ Res. 2005;96:54–63. https://doi.org/10.1161/01.RES.0000152325.07495.5a.

    Article  CAS  PubMed  Google Scholar 

  66. Coronel R, Wilders R, Verkerk AO, Wiegerinck RF, Benoist D, Bernus O. Electrophysiological changes in heart failure and their implications for arrhythmogenesis. Biochim Biophys Acta - Mol Basis Dis. 2013;1832:2432–41. https://doi.org/10.1016/J.BBADIS.2013.04.002.

    Article  CAS  Google Scholar 

  67. Poelzing S, Rosenbaum DS. Altered connexin43 expression produces arrhythmia substrate in heart failure. Am J Physiol Circ Physiol. 2004;287:H1762–70. https://doi.org/10.1152/ajpheart.00346.2004.

    Article  CAS  Google Scholar 

  68. Akar FG, Spragg DD, Tunin RS, Kass DA, Tomaselli GF. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ Res. 2004;95:717–25. https://doi.org/10.1161/01.RES.0000144125.61927.1c.

    Article  CAS  PubMed  Google Scholar 

  69. Peters NS, Green CR, Poole-Wilson PA, Severs NJ. Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts. Circulation. 1993;88:864–75. https://doi.org/10.1161/01.CIR.88.3.864.

    Article  CAS  PubMed  Google Scholar 

  70. Smith JH, Green CR, Peters NS, Rothery S, Severs NJ. Altered patterns of gap junction distribution in ischemic heart disease. An immunohistochemical study of human myocardium using laser scanning confocal microscopy. Am J Pathol. 1991;139:801–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Betsuyaku T, Nnebe NS, Sundset R, Patibandla S, Krueger CM, Yamada KA. Overexpression of cardiac connexin45 increases susceptibility to ventricular tachyarrhythmias in vivo. Am J Physiol Circ Physiol. 2006;290:H163–71. https://doi.org/10.1152/ajpheart.01308.2004.

    Article  CAS  Google Scholar 

  72. YAMADA KA, ROGERS JG, SUNDSET R, et al. Up-regulation of connexin45 in heart failure. J Cardiovasc Electrophysiol. 2003;14:1205–12. https://doi.org/10.1046/j.1540-8167.2003.03276.x.

    Article  PubMed  Google Scholar 

  73. Balke C, Shorofsky SR. Alterations in calcium handling in cardiac hypertrophy and heart failure. Cardiovasc Res. 1998;37:290–9. https://doi.org/10.1016/S0008-6363(97)00272-1.

    Article  CAS  PubMed  Google Scholar 

  74. Dipla K, Mattiello JA, Margulies KB, Jeevanandam V, Houser SR. The sarcoplasmic reticulum and the Na+/Ca2+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes. Circ Res. 1999;84:435–44.

    CAS  PubMed  Google Scholar 

  75. Verkerk AO, Veldkamp MW, Baartscheer A, Schumacher CA, Klöpping C, van Ginneken ACG, et al. Ionic mechanism of delayed after depolarizations in ventricular cells isolated from human end-stage failing hearts. Circulation. 2001;104:2728–33.

    CAS  PubMed  Google Scholar 

  76. Hobai IA, O’Rourke B. Decreased sarcoplasmic reticulum calcium content is responsible for defective excitation-contraction coupling in canine heart failure. Circulation. 2001;103:1577–84.

    CAS  PubMed  Google Scholar 

  77. Baartscheer A, Schumacher C, Belterman C, CORONEL R, FIOLET J. SR calcium handling and calcium after-transients in a rabbit model of heart failure. Cardiovasc Res. 2003;58:99–108. https://doi.org/10.1016/S0008-6363(02)00854-4.

    Article  CAS  PubMed  Google Scholar 

  78. Giles W, Shimoni Y. Comparison of sodium-calcium exchanger and transient inward currents in single cells from rabbit ventricle. J Physiol. 1989;417:465–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Verkerk AO, Veldkamp MW, Bouman LN, van Ginneken AC. Calcium-activated Cl(-) current contributes to delayed after depolarizations in single Purkinje and ventricular myocytes. Circulation. 2000;101:2639–44.

    CAS  PubMed  Google Scholar 

  80. Zygmunt AC. Intracellular calcium activates a chloride current in canine ventricular myocytes. Am J Phys. 1994;267:H1984–95. https://doi.org/10.1152/ajpheart.1994.267.5.H1984.

    Article  CAS  Google Scholar 

  81. Han X, Ferrier GR. Ionic mechanisms of transient inward current in the absence of Na(+)-Ca2+ exchange in rabbit cardiac Purkinje fibres. J Physiol. 1992;456:19–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cleland JG, Erhardt L, Murray G, et al. Effect of ramipril on morbidity and mode of death among survivors of acute myocardial infarction with clinical evidence of heart failure. A report from the AIRE Study Investigators. Eur Heart J. 1997;18:41–51.

    CAS  PubMed  Google Scholar 

  83. Cleland JG, Dargie HJ, Hodsman GP, Ball SG, Robertson JI, Morton JJ, et al. Captopril in heart failure. A double blind controlled trial. Br Heart J. 1984;52:530–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. A placebo-controlled trial of captopril in refractory chronic congestive heart failure. Captopril Multicenter Research Group. J Am Coll Cardiol. 1983;2:755–63.

  85. Pitt B, Poole-Wilson PA, Segal R, Martinez FA, Dickstein K, Camm AJ, et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial--the Losartan Heart Failure Survival Study ELITE II. Lancet (London, England). 2000;355:1582–7.

    CAS  Google Scholar 

  86. Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet (London, England). 1997;349:747–52.

    CAS  Google Scholar 

  87. SOLVD Investigators, Yusuf S, Pitt B, et al. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med. 1992;327:685–91. https://doi.org/10.1056/NEJM199209033271003.

    Article  Google Scholar 

  88. Pfeffer MA, Braunwald E, Moyé LA, Basta L, Brown EJ Jr, Cuddy TE, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 1992;327:669–77. https://doi.org/10.1056/NEJM199209033271001.

    Article  CAS  PubMed  Google Scholar 

  89. Group* TCTS. Effects of enalapril on mortality in severe congestive heart failure. N Engl J Med. 1987;316:1429–35. https://doi.org/10.1056/NEJM198706043162301.

    Article  Google Scholar 

  90. Pratt CM, Gardner M, Pepine C, Kohn R, Young JB, Greenberg B, et al. Lack of long-term ventricular arrhythmia reduction by enalapril in heart failure. SOLVD Investigators. Am J Cardiol. 1995;75:1244–9.

    CAS  PubMed  Google Scholar 

  91. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004. https://doi.org/10.1056/NEJMoa1409077.

    Article  CAS  PubMed  Google Scholar 

  92. Desai AS, McMurray JJV, Packer M, et al. Effect of the angiotensin-receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients. Eur Heart J. 2015;36:1990–7. https://doi.org/10.1093/eurheartj/ehv186.

    Article  CAS  PubMed  Google Scholar 

  93. Cooper HA, Dries DL, Davis CE, Shen YL, Domanski MJ. Diuretics and risk of arrhythmic death in patients with left ventricular dysfunction. Circulation. 1999;100:1311–5.

    CAS  PubMed  Google Scholar 

  94. Eshaghian S, Horwich TB, Fonarow GC. Relation of loop diuretic dose to mortality in advanced heart failure. Am J Cardiol. 2006;97:1759–64. https://doi.org/10.1016/j.amjcard.2005.12.072.

    Article  CAS  PubMed  Google Scholar 

  95. Hasselblad V, Stough WG, Shah MR, Lokhnygina Y, O’Connor CM, Califf RM, et al. Relation between dose of loop diuretics and outcomes in a heart failure population: results of the ESCAPE Trial. Eur J Heart Fail. 2007;9:1064–9. https://doi.org/10.1016/j.ejheart.2007.07.011.

    Article  CAS  PubMed  Google Scholar 

  96. Bayliss J, Norell M, Canepa-Anson R, Sutton G, Poole-Wilson P. Untreated heart failure: clinical and neuroendocrine effects of introducing diuretics. Br Heart J. 1987;57:17–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ahmed A, Husain A, Love TE, Gambassi G, Dell’Italia LJ, Francis GS, et al. Heart failure, chronic diuretic use, and increase in mortality and hospitalization: an observational study using propensity score methods. Eur Heart J. 2006;27:1431–9. https://doi.org/10.1093/eurheartj/ehi890.

    Article  PubMed  Google Scholar 

  98. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation. 2018;138:e272–391. https://doi.org/10.1161/CIR.0000000000000549.

    Article  PubMed  Google Scholar 

  99. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med. 1999;341:709–17. https://doi.org/10.1056/NEJM199909023411001.

    Article  CAS  PubMed  Google Scholar 

  100. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21. https://doi.org/10.1056/NEJMoa030207.

    Article  CAS  PubMed  Google Scholar 

  101. Zannad F, McMurray JJV, Krum H, van Veldhuisen D, Swedberg K, Shi H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11–21. https://doi.org/10.1056/NEJMoa1009492.

    Article  CAS  PubMed  Google Scholar 

  102. Fernandez HM, Leipzig RM. Spironolactone in patients with heart failure. N Engl J Med. 2000;342:132–4. https://doi.org/10.1056/NEJM200001133420213.

    Article  CAS  PubMed  Google Scholar 

  103. Tang WHW, Parameswaran AC, Maroo AP, Francis GS. Aldosterone receptor antagonists in the medical management of chronic heart failure. Mayo Clin Proc. 2005;80:1623–30. https://doi.org/10.4065/80.12.1623.

    Article  CAS  PubMed  Google Scholar 

  104. Swedberg K, Hjalmarson A, Waagstein F, Wallentin I. Prolongation of survival in congestive cardiomyopathy by beta-receptor blockade. Lancet (London, England). 1979;1:1374–6.

    CAS  Google Scholar 

  105. Waagstein F, Hjalmarson A, Varnauskas E, Wallentin I. Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy. Br Heart J. 1975;37:1022–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Waagstein F, Bristow MR, Swedberg K, et al. Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Metoprolol in Dilated Cardiomyopathy (MDC) Trial Study Group. Lancet (London, England). 1993;342:1441–6.

    CAS  Google Scholar 

  107. Anderson JL, Lutz JR, Gilbert EM, Sorensen SG, Yanowitz FG, Menlove RL, et al. A randomized trial of low-dose beta-blockade therapy for idiopathic dilated cardiomyopathy. Am J Cardiol. 1985;55:471–5.

    CAS  PubMed  Google Scholar 

  108. Rydén L, Ariniego R, Arnman K, Herlitz J, Hjalmarson Å, Holmberg S, et al. A double-blind trial of metoprolol in acute myocardial infarction. Effects on ventricular tachyarrhythmias. N Engl J Med. 1983;308:614–8. https://doi.org/10.1056/NEJM198303173081102.

    Article  PubMed  Google Scholar 

  109. Steinbeck G, Andresen D, Bach P, Haberl R, Oeff M, Hoffmann E, et al. A comparison of electrophysiologically guided antiarrhythmic drug therapy with beta-blocker therapy in patients with symptomatic, sustained ventricular tachyarrhythmias. N Engl J Med. 1992;327:987–92. https://doi.org/10.1056/NEJM199210013271404.

    Article  CAS  PubMed  Google Scholar 

  110. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet (London, England). 1999;353:2001–7.

  111. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet (London, England). 1999;353:9–13. https://doi.org/10.1016/S0140-6736(98)11181-9.

  112. Packer M. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation. 2002;106:2194–9. https://doi.org/10.1161/01.CIR.0000035653.72855.BF.

    Article  PubMed  Google Scholar 

  113. Dargie HJ. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet (London, England). 2001;357:1385–90. https://doi.org/10.1016/S0140-6736(00)04560-8.

    Article  CAS  Google Scholar 

  114. Packer M, Colucci WS, Sackner-Bernstein JD, et al. Double-blind, placebo-controlled study of the effects of carvedilol in patients with moderate to severe heart failure. The PRECISE Trial. Prospective Randomized Evaluation of Carvedilol on Symptoms and Exercise. Circulation. 1996;94:2793–9.

    CAS  PubMed  Google Scholar 

  115. Packer M, Coats AJS, Fowler MB, Katus HA, Krum H, Mohacsi P, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344:1651–8. https://doi.org/10.1056/NEJM200105313442201.

    Article  CAS  PubMed  Google Scholar 

  116. Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med. 1996;334:1349–55. https://doi.org/10.1056/NEJM199605233342101.

    Article  CAS  PubMed  Google Scholar 

  117. McMurray J, Køber L, Robertson M, Dargie H, Colucci W, Lopez-Sendon J, et al. Antiarrhythmic effect of carvedilol after acute myocardial infarction: results of the Carvedilol Post-Infarct Survival Control in Left Ventricular Dysfunction (CAPRICORN) trial. J Am Coll Cardiol. 2005;45:525–30. https://doi.org/10.1016/J.JACC.2004.09.076.

    Article  CAS  PubMed  Google Scholar 

  118. Flather MD, Shibata MC, Coats AJS, van Veldhuisen D, Parkhomenko A, Borbola J, et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J. 2005;26:215–25. https://doi.org/10.1093/eurheartj/ehi115.

    Article  CAS  PubMed  Google Scholar 

  119. Lichstein E, Morganroth J, Harrist R, Hubble E. Effect of propranolol on ventricular arrhythmia. The beta-blocker heart attack trial experience. Circulation. 1983;67:I5–10.

    CAS  PubMed  Google Scholar 

  120. Al-Gobari M, El Khatib C, Pillon F, Gueyffier F. β-Blockers for the prevention of sudden cardiac death in heart failure patients: a meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2013;13:52. https://doi.org/10.1186/1471-2261-13-52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Moss AJ, Hall WJ, Cannom DS, Daubert JP, Higgins SL, Klein H, et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. N Engl J Med. 1996;335:1933–40. https://doi.org/10.1056/NEJM199612263352601.

    Article  CAS  PubMed  Google Scholar 

  122. Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346:877–83. https://doi.org/10.1056/NEJMoa013474.

    Article  PubMed  Google Scholar 

  123. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, et al. Amiodarone or an implantable cardioverter–defibrillator for congestive heart failure. N Engl J Med. 2005;352:225–37. https://doi.org/10.1056/NEJMoa043399.

    Article  CAS  PubMed  Google Scholar 

  124. Goldenberg I. Causes and consequences of heart failure after prophylactic implantation of a defibrillator in the multicenter automatic defibrillator implantation trial II. Circulation. 2006;113:2810–7. https://doi.org/10.1161/CIRCULATIONAHA.105.577262.

    Article  PubMed  Google Scholar 

  125. Køber L, Thune JJ, Nielsen JC, Haarbo J, Videbæk L, Korup E, et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med. 2016;375:1221–30. https://doi.org/10.1056/NEJMoa1608029.

    Article  PubMed  Google Scholar 

  126. Steinbeck G, Andresen D, Seidl K, Brachmann J, Hoffmann E, Wojciechowski D, et al. Defibrillator implantation early after myocardial infarction. N Engl J Med. 2009;361:1427–36. https://doi.org/10.1056/NEJMoa0901889.

    Article  CAS  PubMed  Google Scholar 

  127. Hohnloser SH, Kuck KH, Dorian P, Roberts RS, Hampton JR, Hatala R, et al. Prophylactic use of an implantable cardioverter–defibrillator after acute myocardial infarction. N Engl J Med. 2004;351:2481–8. https://doi.org/10.1056/NEJMoa041489.

    Article  CAS  PubMed  Google Scholar 

  128. Koehler F, Koehler K, Deckwart O, Prescher S, Wegscheider K, Winkler S, et al. Telemedical Interventional Management in Heart Failure II (TIM-HF2), a randomised, controlled trial investigating the impact of telemedicine on unplanned cardiovascular hospitalisations and mortality in heart failure patients: study design and description. Eur J Heart Fail. 2018;20:1485–93. https://doi.org/10.1002/ejhf.1300.

    Article  PubMed  Google Scholar 

  129. Poole JE, Johnson GW, Hellkamp AS, Anderson J, Callans DJ, Raitt MH, et al. Prognostic importance of defibrillator shocks in patients with heart failure. N Engl J Med. 2008;359:1009–17. https://doi.org/10.1056/NEJMoa071098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Daubert JP, Zareba W, Cannom DS, McNitt S, Rosero SZ, Wang P, et al. Inappropriate implantable cardioverter-defibrillator shocks in MADIT II: frequency, mechanisms, predictors, and survival impact. J Am Coll Cardiol. 2008;51:1357–65. https://doi.org/10.1016/J.JACC.2007.09.073.

    Article  PubMed  Google Scholar 

  131. Bhavnani SP, Kluger J, Coleman CI, White CM, Guertin D, Shafi NA, et al. The prognostic impact of shocks for clinical and induced arrhythmias on morbidity and mortality among patients with implantable cardioverter-defibrillators. Hear Rhythm. 2010;7:755–60. https://doi.org/10.1016/j.hrthm.2010.02.039.

    Article  Google Scholar 

  132. Whang W, Mittleman MA, Rich DQ, Wang PJ, Ruskin JN, Tofler GH, et al. Heart failure and the risk of shocks in patients with implantable cardioverter defibrillators results from the Triggers Of Ventricular Arrhythmias (TOVA) study. Circulation. 2004;109:1386–91. https://doi.org/10.1161/01.CIR.0000120703.99433.1E.

    Article  PubMed  Google Scholar 

  133. Singh JP, Hall WJ, McNitt S, Wang H, Daubert JP, Zareba W, et al. Factors influencing appropriate firing of the implanted defibrillator for ventricular tachycardia/fibrillation. J Am Coll Cardiol. 2005;46:1712–20. https://doi.org/10.1016/j.jacc.2005.05.088.

    Article  PubMed  Google Scholar 

  134. Bhavnani SP, Coleman CI, Guertin D, Yarlagadda RK, Clyne CA, Kluger J. Evaluation of the Charlson comorbidity index to predict early mortality in implantable cardioverter defibrillator patients. Ann Noninvasive Electrocardiol. 2013;18:379–88. https://doi.org/10.1111/anec.12045.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, de Marco T, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–50. https://doi.org/10.1056/NEJMoa032423.

    Article  CAS  PubMed  Google Scholar 

  136. McAlister FA, Ezekowitz J, Hooton N, et al. Cardiac resynchronization therapy for patients with left ventricular systolic dysfunction. JAMA. 2007;297:2502. https://doi.org/10.1001/jama.297.22.2502.

    CAS  PubMed  Google Scholar 

  137. Ruwald MH, Solomon SD, Foster E, Kutyifa V, Ruwald AC, Sherazi S, et al. Left ventricular ejection fraction normalization in cardiac resynchronization therapy and risk of ventricular arrhythmias and clinical outcomes: results from the multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy. Circulation. 2014;130:2278–86. https://doi.org/10.1161/CIRCULATIONAHA.114.011283.

    Article  PubMed  Google Scholar 

  138. Cleland JGF, Daubert J-C, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–49. https://doi.org/10.1056/NEJMoa050496.

    Article  CAS  PubMed  Google Scholar 

  139. Jones S, Lumens J, Sohaib SMA, et al (2016) Cardiac resynchronization therapy: mechanisms of action and scope for further improvement in cardiac function. Europace 19:euw136. https://doi.org/10.1093/europace/euw136.

  140. Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361:1329–38. https://doi.org/10.1056/NEJMoa0906431 .

    PubMed  Google Scholar 

  141. Ermis C, Seutter R, Zhu AX, Benditt LC, VanHeel L, Sakaguchi S, et al. Impact of upgrade to cardiac resynchronization therapy on ventricular arrhythmia frequency in patients with implantable cardioverter-defibrillators. J Am Coll Cardiol. 2005;46:2258–63. https://doi.org/10.1016/J.JACC.2005.04.067.

    Article  PubMed  Google Scholar 

  142. Higgins SL, Yong P, Sheck D, et al. Biventricular pacing diminishes the need for implantable cardioverter defibrillator therapy. Ventak CHF Investigators. J Am Coll Cardiol. 2000;36:824–7.

    CAS  PubMed  Google Scholar 

  143. Chen Z, Kotecha T, Crichton S, Shetty A, Sohal M, Arujuna A, et al. Lower incidence of inappropriate shock therapy in patients with combined cardiac resynchronisation therapy defibrillators (CRT-D) compared with patients with non-CRT defibrillators (ICDs). Int J Clin Pract. 2013;67:733–9. https://doi.org/10.1111/ijcp.12033.

    Article  CAS  PubMed  Google Scholar 

  144. Blaschke F, Knaus T, Celebi O, Krebs A, Nitardy A, Habedank D, et al. Ventricular tachycardia or ventricular fibrillation occurs less often in patients with left bundle branch block and combined resynchronization and defibrillators than in patients with narrow QRS and conventional defibrillators. Europace. 2012;14:224–9. https://doi.org/10.1093/europace/eur307.

    Article  PubMed  Google Scholar 

  145. Ouellet G, Huang DT, Moss AJ, Hall WJ, Barsheshet A, McNitt S, et al. Effect of cardiac resynchronization therapy on the risk of first and recurrent ventricular tachyarrhythmic events in MADIT-CRT. J Am Coll Cardiol. 2012;60:1809–16. https://doi.org/10.1016/j.jacc.2012.05.057.

    Article  PubMed  Google Scholar 

  146. Barsheshet A, Wang PJ, Moss AJ, Solomon SD, al-Ahmad A, McNitt S, et al. Reverse remodeling and the risk of ventricular tachyarrhythmias in the MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial–Cardiac Resynchronization Therapy). J Am Coll Cardiol. 2011;57:2416–23. https://doi.org/10.1016/J.JACC.2010.12.041.

    Article  PubMed  Google Scholar 

  147. Chatterjee NA, Roka A, Lubitz SA, Gold MR, Daubert C, Linde C, et al. Reduced appropriate implantable cardioverter-defibrillator therapy after cardiac resynchronization therapy-induced left ventricular function recovery: a meta-analysis and systematic review. Eur Heart J. 2015;36:2780–9. https://doi.org/10.1093/eurheartj/ehv373.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cronin EM, Varma N. Remote monitoring of cardiovascular implanted electronic devices: a paradigm shift for the 21st century. Expert Rev Med Devices. 2012;9:367–76. https://doi.org/10.1586/erd.12.18.

    Article  CAS  PubMed  Google Scholar 

  149. Ebinger MW, Krishnan S, Schuger CD. Mechanisms of ventricular arrhythmias in heart failure. Curr Heart Fail Rep. 2005;2:111–7.

    CAS  PubMed  Google Scholar 

  150. Reiter MJ, Stromberg KD, Whitman TA, et al. Influence of intra-cardiac pressure on spontaneous ventricular arrhythmias in patients with systolic heart failure: insights from the REDUCEhf trial; 2018. https://doi.org/10.1161/CIRCEP.113.000223.

    Book  Google Scholar 

  151. MOORE HJ, PETERS MN, FRANZ MR, et al. Intrathoracic impedance preceding ventricular tachyarrhythmia episodes. Pacing Clin Electrophysiol. 2010;33:960–6. https://doi.org/10.1111/j.1540-8159.2010.02746.x.

    Article  PubMed  Google Scholar 

  152. Vanderheyden M, Houben R, Verstreken S, Ståhlberg M, Reiters P, Kessels R, et al. Continuous monitoring of intrathoracic impedance and right ventricular pressures in patients with heart failure. Circ Heart Fail. 2010;3:370–7. https://doi.org/10.1161/CIRCHEARTFAILURE.109.867549.

    Article  PubMed  Google Scholar 

  153. Vollmann D, Nägele H, Schauerte P, et al Clinical utility of intrathoracic impedance monitoring to alert patients with an implanted device of deteriorating chronic heart failure. https://doi.org/10.1093/eurheartj/ehl506.

    PubMed  Google Scholar 

  154. Yu C-M, Wang L, Chau E, Chan RHW, Kong SL, Tang MO, et al. Intrathoracic impedance monitoring in patients with heart failure: correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation. 2005;112:841–8. https://doi.org/10.1161/CIRCULATIONAHA.104.492207.

    Article  PubMed  Google Scholar 

  155. Conraads VM, Tavazzi L, Santini M, Oliva F, Gerritse B, Yu CM, et al. Sensitivity and positive predictive value of implantable intrathoracic impedance monitoring as a predictor of heart failure hospitalizations: the SENSE-HF trial. Eur Heart J. 2011;32:2266–73. https://doi.org/10.1093/eurheartj/ehr050.

    Article  PubMed  Google Scholar 

  156. van Veldhuisen DJ, Braunschweig F, Conraads V, Ford I, Cowie MR, Jondeau G, et al. Intrathoracic impedance monitoring, audible patient alerts, and outcome in patients with heart failure. Circulation. 2011;124:1719–26. https://doi.org/10.1161/CIRCULATIONAHA.111.043042.

    Article  PubMed  Google Scholar 

  157. Boehmer JP, Hariharan R, Devecchi FG, Smith AL, Molon G, Capucci A, et al. A multisensor algorithm predicts heart failure events in patients with implanted devices: results from the MultiSENSE study. JACC Hear Fail. 2017;5:216–25. https://doi.org/10.1016/J.JCHF.2016.12.011.

    Article  Google Scholar 

  158. Whellan DJ, Ousdigian KT, Al-Khatib SM, et al. Combined heart failure device diagnostics identify patients at higher risk of subsequent heart failure hospitalizations results from PARTNERS HF (program to access and review trending information and evaluate correlation to symptoms in patients with heart). 2010. https://doi.org/10.1016/j.jacc.2009.11.089.

    PubMed  Google Scholar 

  159. Ip JE, Cheung JW, Park D, et al. Temporal associations between thoracic volume overload and malignant ventricular arrhythmias: a study of intrathoracic impedance. J Cardiovasc Electrophysiol. 2011;22:293–9. https://doi.org/10.1111/j.1540-8167.2010.01924.x.

    Article  PubMed  Google Scholar 

  160. Abi-Saleh B, Malozzi C, Charaf E, et al. Worsening thoracic impedance as a ventricular tachyarrhythmia risk. Rev Cardiovasc Med. 15:226–31.

  161. Osman M, Ahmed A, Alzubi H, Kheiri B, Osman K, Barbarawi M, et al. Association between changes in the intrathoracic impedance and ventricular arrhythmias in patients with heart failure. Pacing Clin Electrophysiol. 2018;41:1577–82. https://doi.org/10.1111/pace.13535.

    Article  PubMed  Google Scholar 

  162. Sekiguchi Y, Tada H, Yoshida K, Seo Y, Li S, Tejima T, et al. Significant increase in the incidence of ventricular arrhythmic events after an intrathoracic impedance change measured with a cardiac resynchronization therapy defibrillator. Circ J. 2011;75:2614–20.

    PubMed  Google Scholar 

  163. Tang WHW, Warman EN, Johnson JW, Small RS, Heywood JT. Threshold crossing of device-based intrathoracic impedance trends identifies relatively increased mortality risk. Eur Heart J. 2012;33:2189–96. https://doi.org/10.1093/eurheartj/ehs121.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Saxon LA, Hayes DL, Gilliam FR, Heidenreich PA, Day J, Seth M, et al. Long-term outcome after ICD and CRT implantation and influence of remote device follow-up. Circulation. 2010;122:2359–67. https://doi.org/10.1161/CIRCULATIONAHA.110.960633.

    Article  PubMed  Google Scholar 

  165. Varma N, Piccini JP, Snell J, Fischer A, Dalal N, Mittal S. The relationship between level of adherence to automatic wireless remote monitoring and survival in pacemaker and defibrillator patients. J Am Coll Cardiol. 2015;65:2601–10. https://doi.org/10.1016/J.JACC.2015.04.033.

    Article  PubMed  Google Scholar 

  166. Hindricks G, Taborsky M, Glikson M, et al. Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): a randomised controlled trial. Lancet (London, England). 2014;384:583–90. https://doi.org/10.1016/S0140-6736(14)61176-4.

    Article  Google Scholar 

  167. Geller JC, Lewalter T, Bruun NE, et al (2019) Implant-based multi-parameter telemonitoring of patients with heart failure and a defibrillator with vs. without cardiac resynchronization therapy option: a subanalysis of the IN-TIME trial. Clin Res Cardiol 1–11. https://doi.org/10.1007/s00392-019-01447-5.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Parthiban N, Esterman A, Mahajan R, Twomey DJ, Pathak RK, Lau DH, et al. Remote monitoring of implantable cardioverter-defibrillators: a systematic review and meta-analysis of clinical outcomes. J Am Coll Cardiol. 2015;65:2591–600. https://doi.org/10.1016/J.JACC.2015.04.029.

    Article  PubMed  Google Scholar 

  169. Koehler F, Koehler K, Deckwart O, et al. Efficacy of telemedical interventional management in patients with heart failure (TIM-HF2): a randomised, controlled, parallel-group, unmasked trial. Lancet (London, England). 2018;392:1047–57. https://doi.org/10.1016/S0140-6736(18)31880-4.

    Article  Google Scholar 

  170. Genovese EA, Dew MA, Teuteberg JJ, Simon MA, Kay J, Siegenthaler MP, et al. Incidence and patterns of adverse event onset during the first 60 days after ventricular assist device implantation. Ann Thorac Surg. 2009;88:1162–70. https://doi.org/10.1016/J.ATHORACSUR.2009.06.028.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Bedi M, Kormos R, Winowich S, McNamara DM, Mathier MA, Murali S. Ventricular arrhythmias during left ventricular assist device support. Am J Cardiol. 2007;99:1151–3. https://doi.org/10.1016/J.AMJCARD.2006.11.051.

    Article  PubMed  Google Scholar 

  172. Brenyo A, Rao M, Koneru S, Hallinan W, Shah S, Massey HT, et al. Risk of mortality for ventricular arrhythmia in ambulatory LVAD patients. J Cardiovasc Electrophysiol. 2012;23:515–20. https://doi.org/10.1111/j.1540-8167.2011.02223.x.

    Article  PubMed  Google Scholar 

  173. Garan AR, Levin AP, Topkara V, Thomas SS, Yuzefpolskaya M, Colombo PC, et al. Early post-operative ventricular arrhythmias in patients with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2015;34:1611–6. https://doi.org/10.1016/j.healun.2015.05.018.

    Article  PubMed  Google Scholar 

  174. Santangeli P, Rame JE, Birati EY, Marchlinski FE. Management of ventricular arrhythmias in patients with advanced heart failure. J Am Coll Cardiol. 2017;69:1842–60. https://doi.org/10.1016/j.jacc.2017.01.047.

    Article  PubMed  Google Scholar 

  175. REFAAT M, CHEMALY E, LEBECHE D, GWATHMEY JK, HAJJAR RJ. Ventricular arrhythmias after left ventricular assist device implantation. Pacing Clin Electrophysiol. 2008;31:1246–52. https://doi.org/10.1111/j.1540-8159.2008.01173.x.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Makki N, Mesubi O, Steyers C, Olshansky B, Abraham WT. Meta-analysis of the relation of ventricular arrhythmias to all-cause mortality after implantation of a left ventricular assist device. J Cardiol. 2015;116:1385–90. https://doi.org/10.1016/j.amjcard.2015.07.065.

    Article  Google Scholar 

  177. Raasch H, Jensen BC, Chang PP, Mounsey JP, Gehi AK, Chung EH, et al. Epidemiology, management, and outcomes of sustained ventricular arrhythmias after continuous-flow left ventricular assist device implantation. Am Heart J. 2012;164:373–8. https://doi.org/10.1016/J.AHJ.2012.06.018.

    Article  PubMed  Google Scholar 

  178. Sacher F, Reichlin T, Zado ES, Field ME, Viles-Gonzalez JF, Peichl P, et al. Characteristics of ventricular tachycardia ablation in patients with continuous flow left ventricular assist devices. Circ Arrhythm Electrophysiol. 2015;8:592–7. https://doi.org/10.1161/CIRCEP.114.002394.

    Article  PubMed  Google Scholar 

  179. Josephson ME. Clinical cardiac electrophysiology: techniques and interpretations. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  180. Ziv O, Dizon J, Thosani A, Naka Y, Magnano AR, Garan H. Effects of left ventricular assist device therapy on ventricular arrhythmias. J Am Coll Cardiol. 2005;45:1428–34. https://doi.org/10.1016/J.JACC.2005.01.035.

    Article  PubMed  Google Scholar 

  181. Dandamudi G, Ghumman WS, Das MK, Miller JM. Endocardial catheter ablation of ventricular tachycardia in patients with ventricular assist devices. Hear Rhythm. 2007;4:1165–9. https://doi.org/10.1016/j.hrthm.2007.05.029.

    Article  Google Scholar 

  182. HERWEG B, ILERCIL A, KRISTOF-KUTEYEVA O, RINDE-HOFFMAN D, CALDEIRA C, MANGAR D, et al. Clinical observations and outcome of ventricular tachycardia ablation in patients with left ventricular assist devices. Pacing Clin Electrophysiol. 2012;35:1377–83. https://doi.org/10.1111/j.1540-8159.2012.03509.x.

    Article  PubMed  Google Scholar 

  183. Cantillon DJ, Bianco C, Wazni OM, Kanj M, Smedira NG, Wilkoff BL, et al. Electrophysiologic characteristics and catheter ablation of ventricular tachyarrhythmias among patients with heart failure on ventricular assist device support. Hear Rhythm. 2012;9:859–64. https://doi.org/10.1016/j.hrthm.2012.01.018.

    Article  Google Scholar 

  184. Moss JD, Flatley EE, Beaser AD, Shin JH, Nayak HM, Upadhyay GA, et al. Characterization of ventricular tachycardia after left ventricular assist device implantation as destination therapy: a single-center ablation experience. JACC Clin Electrophysiol. 2017;3:1412–24. https://doi.org/10.1016/J.JACEP.2017.05.012.

    Article  PubMed  Google Scholar 

  185. Cantillon DJ, Tarakji KG, Kumbhani DJ, Smedira NG, Starling RC, Wilkoff BL. Improved survival among ventricular assist device recipients with a concomitant implantable cardioverter-defibrillator. Hear Rhythm. 2010;7:466–71. https://doi.org/10.1016/j.hrthm.2009.12.022.

    Article  Google Scholar 

  186. Clerkin KJ, Topkara VK, Demmer RT, Dizon JM, Yuzefpolskaya M, Fried JA, et al. Implantable cardioverter-defibrillators in patients with a continuous-flow left ventricular assist device: an analysis of the INTERMACS Registry. JACC Hear Fail. 2017;5:916–26. https://doi.org/10.1016/J.JCHF.2017.08.014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikezie K. Alvarez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez, C.K., Cronin, E., Baker, W.L. et al. Heart failure as a substrate and trigger for ventricular tachycardia. J Interv Card Electrophysiol 56, 229–247 (2019). https://doi.org/10.1007/s10840-019-00623-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-019-00623-x

Keywords

Navigation