Skip to main content

Advertisement

Log in

Biomarkers in electrophysiology: role in arrhythmias and resynchronization therapy

  • REVIEWS
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Circulating biomarkers related to inflammation, neurohormones, myocardial stress, and necrosis have been associated with commonly encountered arrhythmic disorders such as atrial fibrillation (AF) and more malignant processes including ventricular arrhythmias (VA) and sudden cardiac death (SCD). Both direct and indirect biomarkers implicated in the heart failure cascade have potential prognostic value in patients undergoing cardiac resynchronization therapy (CRT). This review will focus on the role of biomarkers in AF, history of SCD, and CRT with an emphasis to improve clinical risk assessment for arrhythmias and patient selection for device therapy. Notably, information obtained from biomarkers may supplement traditional diagnostic and imaging techniques, thus providing an additional benefit in the management of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Biomarkers Definitions Working Group. (2001). Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology and Therapeutics, 69, 89–95.

    Google Scholar 

  2. Manolio, T. (2003). Novel risk markers and clinical practice. New England Journal of Medicine, 349, 1587–9.

    CAS  PubMed  Google Scholar 

  3. Vitzthum, F., Behrens, F., Anderson, N. L., & Shaw, J. H. (2005). Proteomics: From basic research to diagnostic application. A review of requirements & needs. Journal of Proteome Research, 4, 1086–97.

    CAS  PubMed  Google Scholar 

  4. Zolg, J. W., & Langen, H. (2004). How industry is approaching the search for new diagnostic markers and biomarkers. Molecular and Cellular Proteomics, 3, 345–54.

    CAS  PubMed  Google Scholar 

  5. Fuster, V., Ryden, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., Ellenbogen, K. A., American College of Cardiology Foundation/American Heart Association Task Force, et al. (2011). 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: A report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation, 123, 269–367.

    Google Scholar 

  6. Cairns, J. A., & Connolly, S. J. (1991). Nonrheumatic atrial fibrillation. Risk of stroke and role of antithrombotic therapy. Circulation, 84, 469–81.

    CAS  PubMed  Google Scholar 

  7. Benjamin, E. J., Wolf, P. A., D’Agostino, R. B., Silbershatz, H., Kannel, W. B., & Levy, D. (1998). Impact of atrial fibrillation on the risk of death: The Framingham Heart Study. Circulation, 98, 946–52.

    CAS  PubMed  Google Scholar 

  8. Wilber, D. J., Pappone, C., Neuzil, P., De Paola, A., Marchlinski, F., Natale, A., ThermoCool AF Trial Investigators, et al. (2010). Comparison of antiarrhythmic drug therapy and radiofrequency catheter ablation in patients with paroxysmal atrial fibrillation: A randomized controlled trial. Journal of the American Medical Association, 303, 333–40.

    CAS  PubMed  Google Scholar 

  9. Frustaci, A., Chimenti, C., Bellocci, F., Morgante, E., Russo, M. A., & Maseri, A. (1997). Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation, 96, 1180–4.

    CAS  PubMed  Google Scholar 

  10. Verheule, S., Wilson, E., Everett, T., Shanbhag, S., Golden, C., & Olgin, J. (2003). Alterations in atrial electrophysiology and tissue structure in a canine model of chronic atrial dilatation due to mitral regurgitation. Circulation, 107, 2615–22.

    PubMed Central  PubMed  Google Scholar 

  11. Kaireviciute, D., Blann, A. D., Balakrishnan, B., Lane, D. A., Patel, J. V., Uzdavinys, G., et al. (2010). Characterisation and validity of inflammatory biomarkers in the prediction of post-operative atrial fibrillation in coronary artery disease patients. Thrombosis and Haemostasis, 104, 122–7.

    CAS  PubMed  Google Scholar 

  12. Bruins, P., te Velthuis, H., Yazdanbakhsh, A. P., Jansen, P. G., van Hardevelt, F. W., de Beaumont, E. M., et al. (1997). Activation of the complement system during and after cardiopulmonary bypass surgery: Postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation, 96, 3542–8.

    CAS  PubMed  Google Scholar 

  13. Psychari, S. N., Apostolou, T. S., Sinos, L., Hamodraka, E., Liakos, G., & Kremastinos, D. T. (2005). Relation of elevated C-reactive protein and interleukin-6 levels to left atrial size and duration of episodes in patients with atrial fibrillation. American Journal of Cardiology, 95, 764–7.

    CAS  PubMed  Google Scholar 

  14. Conway, D. S., Buggins, P., Hughes, E., & Lip, G. Y. (2004). Prognostic significance of raised plasma levels of interleukin-6 and C-reactive protein in atrial fibrillation. American Journal of Cardiology, 148, 462–6.

    CAS  Google Scholar 

  15. Guo, Y., Lip, G. Y., & Apostolakis, S. (2012). Inflammation in atrial fibrillation. Journal of the American College of Cardiology, 60, 2263–70.

    CAS  PubMed  Google Scholar 

  16. Cheng, T., Wang, X. F., Hou, Y. T., & Zhang, L. (2012). Correlation between atrial fibrillation, serum amyloid protein A and other inflammatory cytokines. Molecular Medicine Reports, 6, 581–4.

    CAS  PubMed  Google Scholar 

  17. Watanabe, E., Arakawa, T., Uchiyama, T., Kodama, I., & Hishida, H. (2006). High-sensitivity C-reactive protein is predictive of successful cardioversion for atrial fibrillation and maintenance of sinus rhythm after conversion. International Journal of Cardiology, 108, 346–53.

    PubMed  Google Scholar 

  18. Dernellis, J., & Panaretou, M. (2001). C-reactive protein and paroxysmal atrial fibrillation: Evidence of the implication of an inflammatory process in paroxysmal atrial fibrillation. Acta Cardiologica, 56, 375–80.

    CAS  PubMed  Google Scholar 

  19. Neuman, R. B., Bloom, H. L., Shukrullah, I., Darrow, L. A., Kleinbaum, D., Jones, D. P., et al. (2007). Oxidative stress markers are associated with persistent atrial fibrillation. Clinical Chemistry, 53, 1652–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Shimano, M., Shibata, R., Inden, Y., Yoshida, N., Uchikawa, T., Tsuji, Y., et al. (2009). Reactive oxidative metabolites are associated with atrial conduction disturbance in patients with atrial fibrillation. Heart Rhythm, 6, 935–40.

    PubMed  Google Scholar 

  21. Rudolph, V., Andrie, R. P., Rudolph, T. K., Friedrichs, K., Klinke, A., Hirsch-Hoffmann, B., et al. (2010). Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nature Medicine, 16, 470–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Richter, B., Gwechenberger, M., Socas, A., Zorn, G., Albinni, S., Marx, M., et al. (2012). Markers of oxidative stress after ablation of atrial fibrillation are associated with inflammation, delivered radiofrequency energy and early recurrence of atrial fibrillation. Clinical Research in Cardiology, 101, 217–25.

    CAS  PubMed  Google Scholar 

  23. Patlolla, V., Alsheikh-Ali, A. A., & Al-Ahmad, A. M. (2006). The renin–angiotensin system: A therapeutic target in atrial fibrillation. Pacing and Clinical Electrophysiology, 29, 1006–12.

    PubMed  Google Scholar 

  24. Iravanian, S., & Dudley, S. C., Jr. (2008). The renin-angiotensin-aldosterone system (RAAS) and cardiac arrhythmias. Heart Rhythm, 5, S12–7.

    PubMed Central  PubMed  Google Scholar 

  25. Goette, A., Arndt, M., Rocken, C., Spiess, A., Staack, T., Geller, J. C., Huth, C., et al. (2000). Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation, 101, 2678–81.

    CAS  PubMed  Google Scholar 

  26. Goette, A., Staack, T., Rocken, C., Arndt, M., Geller, J. C., Huth, C., et al. (2000). Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. Journal of the American College of Cardiology, 35, 1669–77.

    CAS  PubMed  Google Scholar 

  27. Yin, Y., Dalal, D., Liu, Z., Wu, J., Liu, D., Lan, X., et al. (2006). Prospective randomized study comparing amiodarone vs. amiodarone plus losartan vs. amiodarone plus perindopril for the prevention of atrial fibrillation recurrence in patients with lone paroxysmal atrial fibrillation. European Heart Journal, 27, 1841–6.

    CAS  PubMed  Google Scholar 

  28. Pedersen, O. D., Bagger, H., Kober, L., & Torp-Pedersen, C. (1999). Trandolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction. Circulation, 100, 376–80.

    CAS  PubMed  Google Scholar 

  29. Wachtell, K., Lehto, M., Gerdts, E., Olsen, M. H., Hornestam, B., Dahlöf, B., et al. (2005). Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol: The Losartan Intervention For End Point Reduction in Hypertension (LIFE) study. Journal of the American College of Cardiology, 45, 712–9.

    CAS  PubMed  Google Scholar 

  30. Katan, M., Muller, B., & Christ-Crain, M. (2008). Copeptin: A new and promising diagnostic and prognostic marker. Critical Care, 12, 117.

    PubMed Central  PubMed  Google Scholar 

  31. Smith, J. G., Newton-Cheh, C., Almgren, P., Struck, J., Morgenthaler, N. G., Bergmann, A., et al. (2010). Assessment of conventional cardiovascular risk factors and multiple biomarkers for the prediction of incident heart failure and atrial fibrillation. Journal of the American College of Cardiology, 56, 1712–9.

    PubMed Central  PubMed  Google Scholar 

  32. Latini, R., Masson, S., Pirelli, S., Barlera, S., Pulitano, G., Carbonieri, E., GISSI-AF Investigators, et al. (2011). Circulating cardiovascular biomarkers in recurrent atrial fibrillation: Data from the GISSI-atrial fibrillation trial. Journal of Internal Medicine, 269, 160–71.

    CAS  PubMed  Google Scholar 

  33. Levin, E. R., Gardner, D. G., & Samson, W. K. (1998). Natriuretic peptides. New England Journal of Medicine, 33, 321–8.

    Google Scholar 

  34. Masson, S., Latini, R., Anand, I. S., Barlera, S., Angelici, L., Vago, T., Val-HeFT Investigators, et al. (2008). Prognostic value of changes in N-terminal pro-brain natriuretic peptide in Val-HeFT (Valsartan Heart Failure Trial). Journal of the American College of Cardiology, 52, 997–1003.

    CAS  PubMed  Google Scholar 

  35. Tang, W. H., Francis, G. S., Morrow, D. A., Newby, L. K., Cannon, C. P., Jesse, R. L., NACB Committee, et al. (2007). National Academy of Clinical Biochemistry Laboratory Medicine practice guidelines: Clinical utilization of cardiac biomarker testing in heart failure. Circulation, 116, e99–109.

    CAS  PubMed  Google Scholar 

  36. Ellinor, P. T., Low, A. F., Patton, K. K., Shea, M. A., & Macrae, C. A. (2005). Discordant atrial natriuretic peptide and brain natriuretic peptide levels in lone atrial fibrillation. Journal of the American College of Cardiology, 45, 82–6.

    CAS  PubMed  Google Scholar 

  37. Hussein, A. A., Saliba, W. I., Martin, D. O., Shadman, M., Kanj, M., Bhargava, M., et al. (2011). Plasma B-type natriuretic peptide levels and recurrent arrhythmia after successful ablation of lone atrial fibrillation. Circulation, 123, 2077–82.

    CAS  PubMed  Google Scholar 

  38. Wang, T. J., Larson, M. G., Levy, D., Benjamin, E. J., Leip, E. P., Omland, T., et al. (2004). Plasma natriuretic peptide levels and the risk of cardiovascular events and death. New England Journal of Medicine, 350, 655–63.

    CAS  PubMed  Google Scholar 

  39. Patton, K. K., Ellinor, P. T., Heckbert, S. R., Christenson, R. H., DeFilippi, C., Gottdiener, J. S., et al. (2009). N-terminal pro-B-type natriuretic peptide is a major predictor of the development of atrial fibrillation: The Cardiovascular Health Study. Circulation, 120, 1768–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Adlbrecht, C., Hulsmann, M., Strunk, G., Berger, R., Mörtl, D., Struck, J., et al. (2009). Prognostic value of plasma midregional pro-adrenomedullin and C-terminal-pro-endothelin-1 in chronic heart failure outpatients. European Journal of Heart Failure, 11, 361–6.

    CAS  PubMed  Google Scholar 

  41. Julian, M., Cacho, M., Garcia, M. A., Martín-Santamaría, S., de Pascual-Teresa, B., Ramos, A., et al. (2005). Adrenomedullin: A new target for the design of small molecule modulators with promising pharmacological activities. European Journal of Medicinal Chemistry, 40, 737–50.

    CAS  PubMed  Google Scholar 

  42. Wright, R. S., Anderson, J. L., Adams, C. D., Bridges, C. R., Casey, D. E., Jr., Ettinger, S. M., American College of Cardiology Foundation/American Heart Association Task Force on PracticeGuidelines, et al. (2011). 2011 ACCF/AHA focused update incorporated into the ACC/AHA 2007 Guidelines for the Management of Patients with Unstable Angina/Non-ST-Elevation Myocardial Infarction: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the American Academy of Family Physicians, Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons. Journal of the American College of Cardiology, 57, 215–367.

    Google Scholar 

  43. Range, F. T., Schafers, M., Acil, T., Schäfers, K. P., Kies, P., Paul, M., et al. (2007). Impaired myocardial perfusion and perfusion reserve associated with increased coronary resistance in persistent idiopathic atrial fibrillation. European Heart Journal, 28, 2223–30.

    PubMed  Google Scholar 

  44. van den Bos, E. J., Constantinescu, A. A., van Domburg, R. T., Akin, S., Jordaens, L. J., & Kofflard, M. J. (2011). Minor elevations in troponin I are associated with mortality and adverse cardiac events in patients with atrial fibrillation. European Heart Journal, 32, 611–7.

    PubMed  Google Scholar 

  45. Hijazi, Z., Oldgren, J., Andersson, U., Connolly, S. J., Ezekowitz, M. D., Hohnloser, S. H., et al. (2012). Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: A Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) substudy. Circulation, 125, 1605–16.

    CAS  PubMed  Google Scholar 

  46. Kallergis, E. M., Manios, E. G., Kanoupakis, E. M., Mavrakis, H. E., Arfanakis, D. A., Maliaraki, N. E., et al. (2008). Extracellular matrix alterations in patients with paroxysmal and persistent atrial fibrillation: Biochemical assessment of collagen type-I turnover. Journal of the American College of Cardiology, 52, 211–5.

    CAS  PubMed  Google Scholar 

  47. Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69, 562–73.

    CAS  PubMed  Google Scholar 

  48. Mukherjee, R., Herron, A. R., Lowry, A. S., Stroud, R. E., Stroud, M. R., Wharton, J. M., et al. (2006). Selective induction of matrix metalloproteinases and tissue inhibitor of metalloproteinases in atrial and ventricular myocardium in patients with atrial fibrillation. American Journal of Cardiology, 97, 532–7.

    CAS  PubMed  Google Scholar 

  49. Naji, F., Suran, D., Kanic, V., Vokac, D., & Sabovic, M. (2010). High homocysteine levels predict the recurrence of atrial fibrillation after successful electrical cardioversion. International Heart Journal, 51, 30–3.

    CAS  PubMed  Google Scholar 

  50. Kalogeropoulos, A. S., Tsiodras, S., Rigopoulos, A. G., Sakadakis, E. A., Triantafyllis, A., Kremastinos, D. T., et al. (2011). Novel association patterns of cardiac remodeling markers in patients with essential hypertension and atrial fibrillation. Biomed Central Cardiovascular Disorders, 11, 77.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Okumura, Y., Watanabe, I., Nakai, T., Ohkubo, K., Kofune, T., Kofune, M., et al. (2011). Impact of biomarkers of inflammation and extracellular matrix turnover on the outcome of atrial fibrillation ablation: Importance of matrix metalloproteinase-2 as a predictor of atrial fibrillation recurrence. Journal of Cardiovascular Electrophysiology, 22, 987–93.

    PubMed  Google Scholar 

  52. Ehrlich, J. R., Kaluzny, M., Baumann, S., Lehmann, R., & Hohnloser, S. H. (2011). Biomarkers of structural remodelling and endothelial dysfunction for prediction of cardiovascular events or death in patients with atrial fibrillation. Clinical Research in Cardiology, 100, 1029–36.

    CAS  PubMed  Google Scholar 

  53. Laterza, O. F., Price, C. P., & Scott, M. G. (2002). Cystatin C: An improved estimator of glomerular filtration rate? Clinical Chemistry, 48, 699–707.

    CAS  PubMed  Google Scholar 

  54. Alonso, A., Lopez, F. L., Matsushita, K., Loehr, L. R., Agarwal, S. K., Chen, L. Y., et al. (2011). Chronic kidney disease is associated with the incidence of atrial fibrillation: The Atherosclerosis Risk in Communities (ARIC) study. Circulation, 123, 2946–53.

    PubMed Central  PubMed  Google Scholar 

  55. McManus, D. D., Corteville, D. C., Shlipak, M. G., Whooley, M. A., & Ix, J. H. (2009). Relation of kidney function and albuminuria with atrial fibrillation (from the Heart and Soul Study). American Journal of Cardiology, 104, 1551–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Stecker, E. C., Reinier, K., Marijon, E., Narayanan, K., Teodorescu, C., Uy-Evanado, A., et al. (2014). Public health burden of sudden cardiac death in the United States. Circulation. Arrhythmia and Electrophysiology, 7, 212–7.

    PubMed Central  PubMed  Google Scholar 

  57. Albert, C. M., Chae, C. U., Grodstein, F., Rose, L. M., Rexrode, K. M., Ruskin, J. N., et al. (2003). Prospective study of sudden cardiac death among women in the United States. Circulation, 107, 2096–101.

    PubMed  Google Scholar 

  58. Nichol, G., Thomas, E., Callaway, C. W., Hedges, J., Powell, J. L., Aufderheide, T. P., Resuscitation Outcomes Consortium Investigators, et al. (2008). Regional variation in out-of-hospital cardiac arrest incidence and outcome. Journal of the American Medical Association, 300, 1423–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Moss, A. J., Zareba, W., Hall, W. J., Klein, H., Wilber, D. J., Cannom, D. S., Multicenter Automatic Defibrillator Implantation Trial II Investigators, et al. (2002). Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. New England Journal of Medicine, 346, 877–83.

    PubMed  Google Scholar 

  60. Stecker, E. C., Vickers, C., Waltz, J., Socoteanu, C., John, B. T., Mariani, R., et al. (2006). Population-based analysis of sudden cardiac death with and without left ventricular systolic dysfunction: Two-year findings from the Oregon Sudden Unexpected Death Study. Journal of the American College of Cardiology, 47, 1161–6.

    PubMed  Google Scholar 

  61. Finn, A. V., Nakano, M., Narula, J., Kolodgie, F. D., & Virmani, R. (2010). Concept of vulnerable/unstable plaque. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 1282–92.

    CAS  PubMed  Google Scholar 

  62. Burke, A. P., Farb, A., Malcom, G. T., Liang, Y. H., Smialek, J., & Virmani, R. (1997). Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. New England Journal of Medicine, 336, 1276–82.

    CAS  PubMed  Google Scholar 

  63. Albert, C. M., Ma, J., Rifai, N., Stampfer, M. J., & Ridker, P. M. (2002). Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation, 105, 2595–9.

    CAS  PubMed  Google Scholar 

  64. Biasucci, L. M., Bellocci, F., Landolina, M., Rordorf, R., Vado, A., Menardi, E., et al. (2012). Risk stratification of ischaemic patients with implantable cardioverter defibrillators by C-reactive protein and a multi-markers strategy: Results of the CAMI-GUIDE study. European Heart Journal, 33, 1344–50.

    CAS  PubMed  Google Scholar 

  65. Danesh, J., Kaptoge, S., Mann, A. G., Sarwar, N., Wood, A., Angleman, S. B., et al. (2008). Long-term interleukin-6 levels and subsequent risk of coronary heart disease: Two new prospective studies and a systematic review. Public Library of Science Medicine., 5, e78.

    PubMed Central  PubMed  Google Scholar 

  66. Empana, J. P., Jouven, X., Canoui-Poitrine, F., Luc, G., Tafflet, M., Haas, B., et al. (2010). C-reactive protein, interleukin 6, fibrinogen and risk of sudden death in European middle-aged men: The PRIME study. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 2047–52.

    CAS  PubMed  Google Scholar 

  67. Sharma, O. P., Maheshwari, A., & Thaker, K. (1993). Myocardial sarcoidosis. Chest, 103, 253–8.

    CAS  PubMed  Google Scholar 

  68. Zipse, M. M., & Sauer, W. H. (2013). Electrophysiologic manifestations of cardiac sarcoidosis. Current Opinion in Pulmonary Medicine, 19, 485–92.

    PubMed  Google Scholar 

  69. Epstein, A. E., Dimarco, J. P., Ellenbogen, K. A., Estes, N. A., 3rd, Freedman, R. A., Gettes, L. S., et al. (2008). ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. Journal of the American College of Cardiology, 51, e1–62.

    PubMed  Google Scholar 

  70. Rassi, A., Jr., Rassi, S. G., & Rassi, A. (2001). Sudden death in Chagas’ disease. Arquivos Brasileiros de Cardiologia, 76, 75–96.

    PubMed  Google Scholar 

  71. Tseng, Z. H., Secemsky, E. A., Dowdy, D., Vittinghoff, E., Moyers, B., Wong, J. K., et al. (2012). Sudden cardiac death in patients with human immunodeficiency virus infection. Journal of the American College of Cardiology, 59, 1891–6.

    PubMed Central  PubMed  Google Scholar 

  72. Tapanainen, J. M., Lindgren, K. S., Makikallio, T. H., Vuolteenaho, O., Leppaluoto, J., & Huikuri, H. V. (2004). Natriuretic peptides as predictors of non-sudden and sudden cardiac death after acute myocardial infarction in the beta-blocking era. Journal of the American College of Cardiology, 43, 757–63.

    CAS  PubMed  Google Scholar 

  73. Berger, R., Huelsman, M., Strecker, K., Bojic, A., Moser, P., Stanek, B., & Pacher, R. (2002). B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation, 105, 2392–7.

    PubMed  Google Scholar 

  74. Korngold, E. C., Januzzi, J. L., Jr., Gantzer, M. L., Moorthy, M. V., Cook, N. R., & Albert, C. M. (2009). Amino-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein as predictors of sudden cardiac death among women. Circulation, 119, 2868–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Patton, K. K., Sotoodehnia, N., DeFilippi, C., Siscovick, D. S., Gottdiener, J. S., & Kronmal, R. A. (2011). N-terminal pro-B-type natriuretic peptide is associated with sudden cardiac death risk: The Cardiovascular Health Study. Heart Rhythm, 8, 228–33.

    PubMed  Google Scholar 

  76. Liu, Z., Cui, L., Wang, Y., & Guo, Y. (2006). Cardiac troponin I and ventricular arrhythmia in patients with chronic heart failure. European Journal of Clinical Investigation, 36, 466–72.

    CAS  PubMed  Google Scholar 

  77. Uusimaa, P., Risteli, J., Niemela, M., Lumme, J., Ikäheimo, M., Jounela, A., et al. (1997). Collagen scar formation after acute myocardial infarction: Relationships to infarct size, left ventricular function, and coronary artery patency. Circulation, 96, 2565–72.

    CAS  PubMed  Google Scholar 

  78. Querejeta, R., Varo, N., Lopez, B., Larman, M., Artiñano, E., Etayo, J. C., et al. (2000). Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation, 101, 1729–35.

    CAS  PubMed  Google Scholar 

  79. Spach, M. S., & Boineau, J. P. (1997). Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: A major mechanism of structural heart disease arrhythmias. Pacing and Clinical Electrophysiology, 20, 397–413.

    CAS  PubMed  Google Scholar 

  80. Flevari, P., Theodorakis, G., Leftheriotis, D., Kroupis, C., Kolokathis, F., Dima, K., et al. (2012). Serum markers of deranged myocardial collagen turnover: Their relation to malignant ventricular arrhythmias in cardioverter-defibrillator recipients with heart failure. American Heart Journal, 164, 530–7.

    CAS  PubMed  Google Scholar 

  81. Nygard, O., Nordrehaug, J. E., Refsum, H., Ueland, P. M., Farstad, M., & Vollset, S. E. (1997). Plasma homocysteine levels and mortality in patients with coronary artery disease. New England Journal of Medicine, 337, 230–6.

    CAS  PubMed  Google Scholar 

  82. Burke, A. P., Fonseca, V., Kolodgie, F., Zieske, A., Fink, L., & Virmani, R. (2002). Increased serum homocysteine and sudden death resulting from coronary atherosclerosis with fibrous plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 1936–41.

    CAS  PubMed  Google Scholar 

  83. Deo, R., Sotoodehnia, N., Katz, R., Sarnak, M. J., Fried, L. F., Chonchol, M., et al. (2010). Cystatin C and sudden cardiac death risk in the elderly. Circulation. Cardiovascular Quality and Outcomes, 3, 159–64.

    PubMed Central  PubMed  Google Scholar 

  84. Soloff, L. A. (1970). Arrhythmias following infusions of fatty acids. American Heart Journal, 80, 671–4.

    CAS  PubMed  Google Scholar 

  85. Jouven, X., Charles, M. A., Desnos, M., & Ducimetiere, P. (2001). Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation, 104, 756–61.

    CAS  PubMed  Google Scholar 

  86. Pilz, S., Scharnagl, H., Tiran, B., Wellnitz, B., Seelhorst, U., Boehm, B. O., et al. (2007). Elevated plasma free fatty acids predict sudden cardiac death: A 6.85-year follow-up of 3315 patients after coronary angiography. European Heart Journal, 28, 2763–9.

    CAS  PubMed  Google Scholar 

  87. Abraham, W. T., Fisher, W. G., Smith, A. L., Delurgio, D. B., Leon, A. R., Loh, E., MIRACLE Study Group, et al. (2002). Multicenter InSync Randomized Clinical Evaluation. Cardiac resynchronization in chronic heart failure. New England Journal of Medicine, 346, 1845–53.

    PubMed  Google Scholar 

  88. Bristow, M. R., Saxon, L. A., Boehmer, J., Krueger, S., Kass, D. A., De Marco, T., Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure (COMPANION) Investigators, et al. (2004). Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. New England Journal of Medicine, 350, 2140–50.

    CAS  PubMed  Google Scholar 

  89. Young, J. B., Abraham, W. T., Smith, A. L., Leon, A. R., Lieberman, R., Wilkoff, B., et al. (2003). Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: The MIRACLE ICD Trial. Journal of the American Medical Association, 289, 2685–94.

    PubMed  Google Scholar 

  90. Vasan, R. S., Sullivan, L. M., Roubenoff, R., Dinarello, C. A., Harris, T., Benjamin, E. J., et al. (2003). Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: The Framingham Heart Study. Circulation, 107, 1486–91.

    CAS  PubMed  Google Scholar 

  91. Lappegard, K. T., & Bjornstad, H. (2006). Anti-inflammatory effect of cardiac resynchronization therapy. Pacing and Clinical Electrophysiology, 29, 753–8.

    PubMed  Google Scholar 

  92. Theodorakis, G. N., Flevari, P., Kroupis, C., Adamopoulos, S., Livanis, E. G., Kostopoulou, A., et al. (2006). Antiinflammatory effects of cardiac resynchronization therapy in patients with chronic heart failure. Pacing and Clinical Electrophysiology, 29, 255–61.

    PubMed  Google Scholar 

  93. Rubaj, A., Rucinski, P., Rejdak, K., Oleszczak, K., Duma, D., Grieb, P., et al. (2006). Biventricular versus right ventricular pacing decreases immune activation and augments nitric oxide production in patients with chronic heart failure. European Journal of Heart Failure, 8, 615–20.

    CAS  PubMed  Google Scholar 

  94. Michelucci, A., Ricciardi, G., Sofi, F., Gori, A. M., Pirolo, F., Pieragnoli, P., et al. (2007). Relation of inflammatory status to major adverse cardiac events and reverse remodeling in patients undergoing cardiac resynchronization therapy. Journal of Cardiac Failure, 13, 207–10.

    PubMed  Google Scholar 

  95. Januzzi, J. L., Jr., Camargo, C. A., Anwaruddin, S., Baggish, A. L., Chen, A. A., Krauser, D. G., et al. (2005). The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. American Journal of Cardiology, 95, 948–54.

    CAS  PubMed  Google Scholar 

  96. Maisel, A. S., McCord, J., Nowak, R. M., Hollander, J. E., Wu, A. H., Duc, P., et al. (2003). Bedside B-Type natriuretic peptide in the emergency diagnosis of heart failure with reduced or preserved ejection fraction. Results from the Breathing Not Properly Multinational Study. Journal of the American College of Cardiology, 41, 2010–7.

    PubMed  Google Scholar 

  97. Jourdain, P., Jondeau, G., Funck, F., Gueffet, P., Le Helloco, A., Donal, E., et al. (2007). Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: The STARS-BNP Multicenter Study. Journal of the American College of Cardiology, 49, 1733–9.

    CAS  PubMed  Google Scholar 

  98. Januzzi, J. L., Jr., Rehman, S. U., Mohammed, A. A., Bhardwaj, A., Barajas, L., Barajas, J., et al. (2011). Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. Journal of the American College of Cardiology, 58, 1881–9.

    CAS  PubMed  Google Scholar 

  99. Delgado, R. M., Palanichamy, N., Radovancevic, R., Vrtovec, B., & Radovancevic, B. (2006). Brain natriuretic peptide levels and response to cardiac resynchronization therapy in heart failure patients. Congestive Heart Failure, 12, 250–3.

    CAS  PubMed  Google Scholar 

  100. Lellouche, N., De Diego, C., Cesario, D. A., Vaseghi, M., Horowitz, B. N., Mahajan, A., et al. (2007). Usefulness of preimplantation B-type natriuretic peptide level for predicting response to cardiac resynchronization therapy. American Journal of Cardiology, 99, 242–6.

    CAS  PubMed  Google Scholar 

  101. Braun, M. U., Rauwolf, T., Zerm, T., Schulze, M., Schnabel, A., & Strasser, R. H. (2005). Long term biventricular resynchronisation therapy in advanced heart failure: Effect on neurohormones. Heart, 91, 601–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Fruhwald, F. M., Fahrleitner-Pammer, A., Berger, R., Leyva, F., Freemantle, N., Erdmann, E., et al. (2007). Early and sustained effects of cardiac resynchronization therapy on N-terminal pro-B-type natriuretic peptide in patients with moderate to severe heart failure and cardiac dyssynchrony. European Heart Journal, 28, 1592–7.

    CAS  PubMed  Google Scholar 

  103. Berger, R., Shankar, A., Fruhwald, F., Fahrleitner-Pammer, A., Freemantle, N., Tavazzi, L., et al. (2009). Relationships between cardiac resynchronization therapy and N-terminal pro-brain natriuretic peptide in patients with heart failure and markers of cardiac dyssynchrony: An analysis from the Cardiac Resynchronization in Heart Failure (CARE-HF) study. European Heart Journal, 30, 2109–16.

    CAS  PubMed  Google Scholar 

  104. Smit, M. D., Maass, A. H., Hillege, H. L., Wiesfeld, A. C., Van Veldhuisen, D. J., & Van Gelder, I. C. (2011). Prognostic importance of natriuretic peptides and atrial fibrillation in patients receiving cardiac resynchronization therapy. European Journal of Heart Failure, 13, 543–50.

    CAS  PubMed  Google Scholar 

  105. Morales, M. A., Maltinti, M., Piacenti, M., Turchi, S., Giannessi, D., & Del, R. S. (2010). Adrenomedullin plasma levels predict left ventricular reverse remodeling after cardiac resynchronization therapy. Pacing and Clinical Electrophysiology, 33, 865–72.

    PubMed  Google Scholar 

  106. Horwich, T. B., Patel, J., MacLellan, W. R., & Fonarow, G. C. (2003). Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation, 108, 833–8.

    CAS  PubMed  Google Scholar 

  107. Omland, T., de Lemos, J. A., Sabatine, M. S., Christophi, C. A., Rice, M. M., Jablonski, K. A., Prevention of Events with Angiotensin Converting Enzyme Inhibition (PEACE) Trial Investigators, et al. (2009). A sensitive cardiac troponin T assay in stable coronary artery disease. New England Journal of Medicine, 361, 2538–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Aarones, M., Gullestad, L., Aakhus, S., Ueland, T., Skaardal, R., Aass, H., et al. (2011). Prognostic value of cardiac troponin T in patients with moderate to severe heart failure scheduled for cardiac resynchronization therapy. American Heart Journal, 161, 1031–7.

    CAS  PubMed  Google Scholar 

  109. Spinale, F. G., Coker, M. L., Heung, L. J., Bond, B. R., Gunasinghe, H. R., Etoh, T., et al. (2000). A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation, 102, 1944–9.

    CAS  PubMed  Google Scholar 

  110. George, J., Patal, S., Wexler, D., Roth, A., Sheps, D., & Keren, G. (2005). Circulating matrix metalloproteinase-2 but not matrix metalloproteinase-3, matrix metalloproteinase-9, or tissue inhibitor of metalloproteinase-1 predicts outcome in patients with congestive heart failure. American Heart Journal, 150, 484–7.

    CAS  PubMed  Google Scholar 

  111. Hessel, M. H., Bleeker, G. B., Bax, J. J., Henneman, M. M., den Adel, B., Klok, M., et al. (2007). Reverse ventricular remodelling after cardiac resynchronization therapy is associated with a reduction in serum tenascin-C and plasma matrix metalloproteinase-9 levels. European Journal of Heart Failure, 9, 1058–63.

    CAS  PubMed  Google Scholar 

  112. Tolosana, J. M., Mont, L., Sitges, M., Berruezo, A., Delgado, V., Vidal, B., et al. (2010). Plasma tissue inhibitor of matrix metalloproteinase-1 (TIMP-1): An independent predictor of poor response to cardiac resynchronization therapy. European Journal of Heart Failure, 12, 492–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Querejeta, R., Lopez, B., Gonzalez, A., Sánchez, E., Larman, M., Martínez Ubago, J. L., et al. (2004). Increased collagen type I synthesis in patients with heart failure of hypertensive origin: Relation to myocardial fibrosis. Circulation, 110, 1263–8.

    CAS  PubMed  Google Scholar 

  114. Burlew, B. S., & Weber, K. T. (2002). Cardiac fibrosis as a cause of diastolic dysfunction. Herz Cardiovascular Diseases, 27, 92–8.

    Google Scholar 

  115. Garcia-Bolao, I., Macias, A., Lopez, B., González, A., Gavira, J. J., Azcárate, P., et al. (2006). A biomarker of myocardial fibrosis predicts long-term response to cardiac resynchronization therapy. Journal of the American College of Cardiology, 47, 2335–7.

    CAS  PubMed  Google Scholar 

  116. Garcia-Bolao, I., Lopez, B., Macias, A., Gavira, J. J., Azcarate, P., & Diez, J. (2008). Impact of collagen type I turnover on the long-term response to cardiac resynchronization therapy. European Heart Journal, 29, 898–906.

    PubMed  Google Scholar 

  117. Sharma, U. C., Pokharel, S., van Brakel, T. J., van Berlo, J. H., Cleutjens, J. P., Schroen, B., et al. (2004). Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation, 110, 3121–8.

    CAS  PubMed  Google Scholar 

  118. de Boer, R. A., Lok, D. J., Jaarsma, T., van der Meer, P., Voors, A. A., Hillege, H. L., et al. (2011). Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Annals of Medicine, 43, 60–8.

    PubMed Central  PubMed  Google Scholar 

  119. Lopez-Andres, N., Rossignol, P., Iraqi, W., Fay, R., Nuée, J., Ghio, S., et al. (2012). Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: Insights from the CARE-HF (Cardiac Resynchronization in Heart Failure) trial. European Journal of Heart Failure, 14, 74–81.

    CAS  PubMed  Google Scholar 

  120. Hillege, H. L., Nitsch, D., Pfeffer, M. A., Swedberg, K., McMurray, J. J., Yusuf, S., Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) Investigators, et al. (2006). Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation, 113, 671–8.

    PubMed  Google Scholar 

  121. Goldenberg, I., Moss, A. J., McNitt, S., Barsheshet, A., Gray, D., Andrews, M. L., et al. (2010). Relation between renal function and response to cardiac resynchronization therapy in Multicenter Automatic Defibrillator Implantation Trial–Cardiac Resynchronization Therapy (MADIT-CRT). Heart Rhythm, 7, 1777–82.

    PubMed  Google Scholar 

  122. Yamamoto, T., Shimano, M., Inden, Y., Miyata, S., Inoue, Y., Yoshida, N., et al. (2013). Cystatin C as a predictor of mortality and cardiovascular morbidity after cardiac resynchronization therapy. Circulation Journal, 77, 2751–6.

    PubMed  Google Scholar 

  123. Kempf, T., von Haehling, S., Peter, T., Allhoff, T., Cicoira, M., Doehner, W., et al. (2007). Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. Journal of the American College of Cardiology, 50, 1054–60.

    CAS  PubMed  Google Scholar 

  124. Foley, P. W., Stegemann, B., Ng, K., Ramachandran, S., Proudler, A., Frenneaux, M. P., et al. (2009). Growth differentiation factor-15 predicts mortality and morbidity after cardiac resynchronization therapy. European Heart Journal, 30, 2749–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Monceau, V., Belikova, Y., Kratassiouk, G., Charue, D., Camors, E., Communal, C., et al. (2004). Externalization of endogenous annexin A5 participates in apoptosis of rat cardiomyocytes. Cardiovascular Research, 64, 496–506.

    CAS  PubMed  Google Scholar 

  126. Ravassa, S., Gonzalez, A., Lopez, B., Beaumont, J., Querejeta, R., Larman, M., et al. (2007). Upregulation of myocardial Annexin A5 in hypertensive heart disease: Association with systolic dysfunction. European Heart Journal, 28, 2785–91.

    CAS  PubMed  Google Scholar 

  127. Ravassa, S., Garcia-Bolao, I., Zudaire, A., Macías, A., Gavira, J. J., Beaumont, J., et al. (2010). Cardiac resynchronization therapy-induced left ventricular reverse remodelling is associated with reduced plasma annexin A5. Cardiovascular Research, 88, 304–13.

    CAS  PubMed  Google Scholar 

  128. Lund, S. A., Giachelli, C. M., & Scatena, M. (2009). The role of osteopontin in inflammatory processes. Journal of Cell Communication and Signaling, 3, 311–22.

    PubMed Central  PubMed  Google Scholar 

  129. Rosenberg, M., Zugck, C., Nelles, M., Juenger, C., Frank, D., Remppis, A., et al. (2008). Osteopontin, a new prognostic biomarker in patients with chronic heart failure. Circulation. Heart Failure, 1, 43–9.

    CAS  PubMed  Google Scholar 

  130. Francia, P., Balla, C., Ricotta, A., Uccellini, A., Frattari, A., Modestino, A., et al. (2011). Plasma osteopontin reveals left ventricular reverse remodelling following cardiac resynchronization therapy in heart failure. International Journal of Cardiology, 153, 306–10.

    PubMed  Google Scholar 

  131. Truong, Q. A., Januzzi, J. L., Szymonifka, J., Thai, W. E., Wai, B., Lavender, Z., et al. (2014). Coronary sinus biomarker sampling compared to peripheral venous blood for predicting outcomes in patients with severe heart failure undergoing cardiac resynchronization therapy: The BIOCRT study. Heart Rhythm, 11, 2167–75.

    PubMed  Google Scholar 

Download references

Disclosures

Dr. Bose has no disclosures to report. Dr. Truong received support from NIH grant K23HL098370 and L30HL093896 and research grant support from St. Jude Medical, Duke Clinical Research Institute, and American College of Radiology Imaging Network. I am serving consultant for Biotronik, Boston Scientific, Medtronic, Sorin, St. Jude Medical, Respicardia, and CardioInsight; have spoken at symposiums sponsored by Medtronic, Boston Scientific, Sorin, and St. Jude Medical; and receive research grants for clinical research from Biotronik, Boston Scientific, Medtronic, Sorin, and St. Jude Medical.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagmeet P. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, A., Truong, Q.A. & Singh, J.P. Biomarkers in electrophysiology: role in arrhythmias and resynchronization therapy. J Interv Card Electrophysiol 43, 31–44 (2015). https://doi.org/10.1007/s10840-015-9982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-015-9982-7

Keywords

Navigation