Skip to main content
Log in

Preparation and dielectric properties of La doped NBCCTO ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

CaCu3Ti4O12 ceramics have great dielectric constant, excellent temperature stability and good frequency stability. However, due to high dielectric loss, its practical application in engineering is hindered. In this paper, Na0.25Bi0.25LaxCa0.5-3x/2Cu3Ti4O12 (NBLCCTO) ceramics were prepared by solid phase synthesis. The effects of sintering temperature and La content on dielectric properties of NBLCCTO ceramics were studied. The results show when the sintering temperature is 1030℃ and La content is 0.05, NBLCCTO ceramics show better dielectric properties. Its dielectric constant has εr = 22,231 at 1 kHz and its dielectric loss is 0.0546 at 10 kHz. Appropriate doping of La can lead to grain refinement and enlarge specific surface area of grain boundary, thus increasing resistivity and reducing dielectric loss. Therefore, NBLCCTO ceramics have lower dielectric loss than Na0.25Bi0.25Ca0.5Cu3Ti4O12 (NBCCTO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Yu, C.R. Zou, Z.Q. Liu, Research progress of cuprum-calcium titanate giant dielectric materials, Aging Appl. Synth. Mater. 48(5), 146–149 (2019) (in china)

  2. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases. J. Solid. State. Chem. 151(2), 323–325 (2000)

  3. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Giant dielectric constant response in a copper-titanate. Solid State Commun. 115(5), 217–220 (2000)

  4. N. Banerjee, J. Parui, S.B. Krupanidhi, Wide Ranged La Modification in CCTO Ceramics Through Sol-Gel: Effect on Microstructure and Dielectric Properties. Integr. Ferroelectr. 121(1), 86–98 (2010)

  5. P. Saengvong, J. Boonlakhorn, N. Chanlek, B. Putasaeng, P. Thongbai, Giant dielectric permittivity with low loss tangent and excellent non−Ohmic properties of the (Na+, Sr2+, Y3+) CaCu3Ti4O12 ceramic system. Ceram. Int. 46(7), 9780–9785 (2020)

  6. M. Chinnathambi, A. Sakthisabarimoorthi, M. Jose, R. Robert, Impact of neodymium doping on the dielectric and electrical properties of CCTO synthesized by a facile sol–gel technique. J. Mater. Sci. Mater. Electron. 32(7), 9194–9207 (2021)

    Article  Google Scholar 

  7. Z.P. Yang, L.J. Zhang, X.L. Chao, R. Li, High permittivity and low dielectric loss of the Ca1−xSrxCu3Ti4O12 ceramics. J. Alloys Compd. 509(35), 8716–8719 (2011)

  8. L.Y. Lin, Y.Q. Liu, J.H. Zhang, Z. Li, Z. Lei, Y. Li, M. Tian, Enhancement of breakdown electric field and dielectric properties of CaCu3Ti4O12 ceramics by Sr doping. Mater. Chem. Phys. 244, 122722–122730 (2020)

  9. X. Dong, Z. Chen, N.C. Xiao, Y. Fan, M.Y. Hong, Dielectric properties of Zn-doped CCTO ceramics by Sol-Gel method. Adv. Mater. Res. 197(10), 302–305 (2011)

  10. A.K. Rai, K.D. Mandal, D. Kumar, O. Parkash, Characterization of nickel doped CCTO: CaCu2.9Ni0.1Ti4O12 and CaCu3Ti3.9Ni0.1O12 synthesized by semi-wet route. J. Alloys Compd. 491(1), 507–512 (2010)

  11. Y.H. Lin, W. Deng, W. Xu, Y. Liu, D.L. Chen, Abnormal dielectric behaviors in Mn-doped CaCu3Ti4O12 ceramics and their response mechanism. Mater. Sci. Eng. B. 177(20), 1773–1776 (2012)

  12. J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, A novel strategy to enhance dielectric performance and non-Ohmic properties in Ca2Cu2xMgxTi4O12. J. Eur. Ceram. Soc. 34(12), 2941–2950 (2014)

  13. M.A. Sulaiman, S.D. Hutagalung, M.F. Ain, Z.A. Ahmad, Dielectric properties of Nb-doped CaCu3Ti4O12 electroceramics measured at high frequencies. J. Alloys Compd. 493(1), 486–492 (2010)

  14. B. Jakkree, T. Prasit, Dielectric properties, nonlinear electrical response and microstructural evolution of CaCu3Ti4-xSnxO12 ceramics prepared by a double ball-milling process. Ceram. Int. 46(4), 4952–4958 (2020)

  15. X.Y. Chen, B. Zhang, L. Ni, Y. Zhou, A. Chang, New negative temperature coefficient ceramics in Zr-doped CaCu3Ti4O12 system. J. Alloys. Compd. 821, 153476–153480 (2020)

  16. N.K. Rai, A.K. Singh, S. Lee, K.D. Mandal, D. Kumar, O. Parkash, Dielectric properties of iron doped calcium copper titanate, CaCu2.9Fe0.1Ti4O12. J. Alloys Compd. 509(36), 8901–8906 (2011)

  17. J. Boonlakhorn, P. Kidkhunthod, P. Thongbai, A novel approach to achieve high dielectric permittivity and low loss tangent in CaCu3Ti4O12 ceramics by co-doping with Sm3+ and Mg2+ ions. J. Eur. Ceram. Soc. 35(13), 3521–3528 (2015)

  18. B. Jakkree, P. Bundit, K. Pinit, T. Prasit, Improved dielectric properties of (Y+Mg) co-doped CaCu3Ti4O12 ceramics by controlling geometric and intrinsic properties of grain boundaries. Mater. Des. 92, 494–498 (2016)

  19. A.K. Thomas, B. Abraham, J. Thomas, K.V. Saban, Structural and dielectric properties of A- and B-sites doped CaCu3Ti4O12 ceramics. Ceram. Int. 41(8), 10250–10255 (2015)

  20. L.H. Yang, H.L. Chao, L.L. Wei, N. Zhao, Z.P. Yang, Dielectric responses of Na0.65Bi0.45Cu3Ti4O12 ceramics based on the composition design of changing the Na/Bi ratio. J. Mater. Sci. Mater Electron. 27, 2221–2227 (2015)

    Google Scholar 

  21. H.M. Ren, P.F. Liang, Z.P. Yang, Processing, dielectric properties and impedance characteristics of Na0.5Bi0.5Cu3Ti4O12 ceramics. Mater. Res. Bull. 45(11), 1608–1613 (2010)

  22. P. KumOnsa, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, Na1/3Ca1/3Bi1/3Cu3Ti4O12: A new giant dielectric perovskite ceramic in ACu3Ti4O12 compounds. J. Eur. Ceram. Soc. 35(5), 1441–1447 (2015)

  23. P. KumOnsa, P. Thongbai, Na1/3Ca1/3Bi1/3Cu3Ti4O12/poly (vinylidene fluoride) composites with high dielectric permittivity and low dielectric loss. Mater. Chem. Phys. 256, 123664–123764 (2020)

  24. H.A. Ardakani, M. Alizadeh, R. Amini, M.R. Ghazanfari, Dielectric properties of CaCu3Ti4O12 improved by chromium/lanthanum co-doping. Ceram. Int. 38(5), 4217–4220 (2012)

  25. H.R. Li, K.M. Qi, Y.R. Xu, B. Wang, Structure, dielectric and pressure sensitive properties of Microwave-sintered La doped CaCu3Ti4O12 ceramics. Electr. Mater. 1, 12–17 (2021) (in china)

  26. W. Li, Z. Luo, L. Tang, F. Xue, P. Guo, Preparation and properties of La3+ doped Ca1-xLaxCu3Ti4O12 ceramics. J. Artif. Cryst. 46(9), 1735–1739 (2017) (in China)

  27. L.T. Yang, X. Kong, F. Li., H. Hao, Z.X. Cheng, H.X. Liu, J.F. Li, S.J. Zhang, Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102(5), 72–108 (2019)

  28. A. Khare, A. Kumar, S. Jaiswar, N.K. Mukhopadhyay, K. Mandal, Dielectric studies of CCTO-based nanocomposite ceramic synthesized by a solid state route. Int. J. Mater. Res. 109(10), 916–921 (2018)

  29. R. Suman, N. Ahlawat, R. Punia, K.M. Sangwan, K. Priyanka, Dielectric and impedance studies of La and Zn co-doped complex perovskite CaCu3Ti4O12 ceramic. Ceram. Int. 44(18), 23125–23136 (2018)

  30. Y.Y. Yan, L. Jin, L.X. Feng, G.H. Cao, Decrease of dielectric loss in giant dielectric constant CaCu3Ti4O12 ceramics by adding CaTiO3. Mater. Sci. Eng. B. 130(1–3): 146–150 (2006)

  31. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, L. Ming, Effects of sintering temperature on the Internal Barrier Layer Capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32(12), 3313–3323 (2012)

  32. P. Thongbai, T. Yamwong, S. Maensiri, V. Amornkitbamrung, P. Chindaprasirt, Improved dielectric and nonlinear electrical properties of fine-grained CaCu3Ti4O12 ceramics prepared by a glycine-nitrate process. J. Am. Ceram. Soc. 97(6), 1785–1790 (2014)

  33. M. Xiao, P. Sheng, Nonlinear current–voltage behavior in La-doped CaCu3Ti4O12 thin films derived from sol–gel method. J. Mater. Sci. Mater. Electron. 27(9), 9483–9488 (2016)

    Article  Google Scholar 

  34. L. Singh, U.S. Rai, K.D. Mandal, B.C. Sin, H.I. Lee, H. Chung, Y. Lee, Comparative dielectric studies of nanostructured BaTiO3, CaCu3Ti4O12 and 0.5BaTiO30.5CaCu3Ti4O12 nano-composites synthesized by modified sol–gel and solid-state methods. Mater. Character. 96, 54–62 (2014)

  35. J.H. You, Q.G. Zhang, W.W. Ju, Relaxation properties of CaCu3Ti4O12. J. Henan Univ. Sci. Tech. (Nat Sci) 30(1), 4–6 (2009) (in china)

  36. Z. Tang, K. Wu, J. Li, S. Huang, Optimized dual-function varistor-capacitor ceramics of core-shell structured xBi2/3CaCu3Ti4O12/(1-x) CaCu3Ti4O12 composites. J. Eur. Ceram. Soc. 40(9), 3437–3444 (2020)

  37. Y.Y. Li, P.F. Liang, X.L. Chao, Z.P. Yang, Preparation of CaCu3Ti4O12 ceramics with low dielectric loss and giant dielectric constant by the sol-gel technique. Ceram. Int. 39(7), 7879–7889 (2013)

  38. T.B. Adams, D.C. Sinclair, A.R. West, Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater. 14(18), 1321–1323 (2002)

  39. T.B. Adams, D.C. Sinclair, A.R. West, Characterization of grain boundary impedances in fine- and coarse-grained CaCu3Ti4O12 ceramics. Phys. Rev. B. Condens. Matter. 73(9), 094124.1–094124.9 (2006)

  40. C. Wang, W. Ni, X. Sun, L. Wang, C. Wang, K. Jin, Relaxor-like behaviors in Na1/2Bi1/2Cu3Ti4O12 ceramics. J. Am. Ceram. Soc. 100(5), 2016–2023 (2017)

  41. J.Y. Li, X.T. Zhao, S.T. Li, M.A. Alim, Intrinsic and extrinsic relaxation of CaCu3Ti4O12 ceramics: effect of sintering. J. Appl. Phys. 108(10), 104104–104110 (2010)

  42. L.I. Zhao, R.X. Xu, Y.X. Wei, X. Han, C.X. Zhai, Z.X. Zhang, X.F. Qi, B. Cui, J.L. Jones, Giant dielectric phenomenon of Ba0.5Sr0.5TiO3/CaCu3Ti4O12 multilayers due to interfacial polarization for capacitor applications. J. Eur. Ceram. Soc. 39(4), 1116-1121 (2019)

  43. Z.H. Peng, X.B. Zhou, J.T. Wang, J. Zhu, P.F. Liang, X.L. Chao, Z.P. Yang, Origin of colossal permittivity and low dielectric loss in Na1/3Cd1/3Y1/3Cu3Ti4O12 ceramics. Ceram. Int. 46(8), 11154–11159 (2020)

  44. Z.H. Peng, D. Wu, P.F. Liang, X.B. Zhou, Grain boundary engineering that induces ultrahigh permittivity and decreased dielectric loss in CdCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 103(2), 1230–1240 (2020)

  45. F.L. Jin, Electrical heterogeneity in CaCu3Ti4O12 ceramics fabricated by sol-gel method. Solid State Commun. 142(10), 573–576 (2007)

Download references

Acknowledgements

We sincerely appreciate Talent Funding Project of Southwest University of Science and Technology, No.21zx7104.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuancheng Teng or Xiaofeng Zhao.

Ethics declarations

Conflict of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Tang, J., Teng, Y. et al. Preparation and dielectric properties of La doped NBCCTO ceramics. J Electroceram 48, 117–126 (2022). https://doi.org/10.1007/s10832-022-00280-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-022-00280-z

Keywords

Navigation