Skip to main content

Advertisement

Log in

The synergistic effect of iron cobaltite compare to its single oxides as cathode in supercapacitor

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Mixed transition metal oxides have attracted great attention in supercapacitors applications due to their better electrochemical performance than their single oxides. In this work, iron cobaltite (FeCo2O4) and its single metal oxides i.e. iron oxide (Fe2O3) and cobalt oxide (Co3O4) were synthesized by a simple hydrothermal process. The structural, spectroscopic and morphological properties were studied using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and field-emission scanning electron microscope (FESEM). XRD and FTIR results show the composition of the products. The obtained iron oxide was α-Fe2O3. FESEM images show that FeCo2O4 and its single metal oxides exhibit different morphology even though they were synthesized via similar method. The electrochemical properties of the α-Fe2O3, Co3O4 and FeCo2O4 electrodes were examined by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) in a 6 M KOH electrolyte solution. At comparable current density, the FeCo2O4 electrode has the highest specific capacitance (Csp), followed by Co3O4 and α-Fe2O3. An asymmetric FeCo2O4/KOH/GO supercapacitor was fabricated. The supercapacitor exhibits maximum energy density of 14.5 Wh kg−1 and maximum power density of 2177 W kg−1. It demonstrates 60% rate capability after 1000 continuous charge-discharge cycles at 1 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)

    CAS  Google Scholar 

  2. T. Winie, A.K. Arof, in Nanostructured Polymer Membranes: Application Vol. 2, eds. By P.M. Visakh, O. Nazarenko (Scrivener Publising (Wiley), Beverly, 2016), p. 311

  3. B.G. Hyun, H.J. Son, S. Ji, J. Jang, S.H. Hur, J.U. Park, J. Electroceram. 38, 43 (2017)

    CAS  Google Scholar 

  4. A. Annu, B. Bhattacharya, P.K. Singh, P.K. Shukla, H. Rhee, J. Alloys Compd. 691, 970 (2017)

    CAS  Google Scholar 

  5. S. Siyahjani, S. Oner, P.K. Singh, High Perform. Polym. 30, 1 (2018)

  6. M. Kunowsky, M. Linares-Solano, A. Garcia-gomez, V. Barranco, J.M. Rojo, J.D. Carruthers, Int. J. Appl. Ceram. Technol. 12, 127 (2015)

  7. S. Ahmed, A. Ahmed, M. Rafat, J. Saudi Chem. Soc. 22, 993 (2018)

    CAS  Google Scholar 

  8. S. Najib, E. Erdem, Nanoscale Adv. 20, 12817 (2019)

    Google Scholar 

  9. S. Dhibar, C.K. Das, J. Appl. Polym. Sci. 134, 44724 (2017)

    Google Scholar 

  10. L. Wang, C. Zhang, X. Jiao, Z. Yuan, Nano Res. 12, 1129 (2019)

    CAS  Google Scholar 

  11. A. Eftekhari, L. Li, Y. Yang, J. Power Sources 347, 86 (2017)

    CAS  Google Scholar 

  12. Y. Xie, D. Wang, J. Ji, Energy Technol. 4, 714 (2016)

    CAS  Google Scholar 

  13. M. Rajesh, C.J. Raj, R. Manikandan, B. Chul, S. Yeup, K. Hyun, Today Energy 6, 96 (2017)

    Google Scholar 

  14. K. Kan, L. Wang, P. Yu, W. Zhou, R. Wang, Y. Lin, K. Shi, H. Fu, Chempluschem. 81, 242 (2016)

    CAS  Google Scholar 

  15. X. Liu, F. Liu, Eur. J. Inorg. Chem. 2018, 987 (2018)

    CAS  Google Scholar 

  16. J. Sodtipinta, H.K. Kim, S.W. Lee, S.M. Smith, P. Pakawatpanurut, K.B. Kim, J. Electroceram. 35, 111 (2015)

    CAS  Google Scholar 

  17. T. Nesakumar, J. Immanuel, R. Atchudan, Y.R. Lee, Int. J. Hydrog. Energy 44, 2323 (2018)

    Google Scholar 

  18. Y. Li, X. Han, T. Yi, Y. He, X. Li, J. Energy Chem. 31, 54 (2019)

    Google Scholar 

  19. M. Shanmugavadivel, V.V. Dhayabaran, M. Subramanian, J. Phys. Chem. Solids 133, 15 (2019)

    CAS  Google Scholar 

  20. Q. Gao, J. Wang, J. Wang, J. Alloys Compd. 789, 193 (2019)

  21. S. Liu, D. Ni, H. Li, K.N. Hui, C. Ouyang, S.C. Jun, J. Mater. Chem. A 6, 10674 (2018)

    CAS  Google Scholar 

  22. M. Liu, L. Kong, C. Lu, X. Li, Y. Luo, L. Kang, ACS Appl. Mater. Interfaces 4, 4631 (2012)

    CAS  Google Scholar 

  23. M.R. Joya, J. Baron-jaimez, J. Barba-ortega, J. Phys.: Conf. Ser. (2013). https://doi.org/10.1088/1742-6596/466/1/012004

  24. S. Yu, V.M.H. Ng, F. Wang, Z. Xiao, C. Li, L.B. Kong, W. Que, K. Zhou, J. Mater. Chem. A 6, 9332 (2018)

    CAS  Google Scholar 

  25. H. Nan, L. Yu, W. Ma, B. Geng, X. Zhang, Dalt. Trans. 44, 9581 (2015)

  26. Z. Chen, C.X. Kronawitter, B.E. Koel, Phys. Chem. Chem. Phys. 17, 29387 (2015)

    CAS  Google Scholar 

  27. H. Zhang, C. Lu, H. Hou, Y. Ma, S. Yuan, J. Alloys Compd. 797, 970 (2019)

    CAS  Google Scholar 

  28. X. Liu, H. Wang, C. Su, P. Zhang, J. Bai, J. Colloid Interface Sci. 351, 427 (2010)

  29. B. Li, Y. Xie, C. Wu, Z. Li, J. Zhang, Mater. Chem. Phys. 99, 479 (2006)

  30. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)

    CAS  Google Scholar 

  31. S. Roldán, D. Barreda, M. Granda, R. Menéndez, R. Santamaría, C. Blanco, Phys. Chem. Chem. Phys. 17, 1084 (2015)

    Google Scholar 

  32. D.P. Dubal, P. Gómez-Romero, B.R. Sankapal, R. Holze, Nano Energy 11, 377 (2015)

    CAS  Google Scholar 

  33. J. Wang, Y. Yang, Z. Huang, F. Kang, Carbon 61, 190 (2019)

    Google Scholar 

  34. L. Zhang, H. Li, K. Li, L. Li, J. Wei, L. Feng, Q. Fu, J. Alloys Compd. 680, 146 (2016)

    CAS  Google Scholar 

  35. C. Zhu, C. Chen, L. Hao, Y. Hu, Z. Chen, Solid State Commun. 130, 681 (2004)

    CAS  Google Scholar 

  36. M. Behrens, F. Girgsdies, Zeitschrift für Anorg und Allg Chemie 636, 919 (2010)

    CAS  Google Scholar 

  37. F. Karadas, C.T. Yavuz, S. Zul, S. Aparicio, G.D. Stucky, M. Atilhan, Langmuir 27, 10642 (2011)

    CAS  Google Scholar 

  38. G. Zhu, C. Xi, M. Shen, C. Bao, J. Zhu, ACS Appl. Mater. Interfaces 6, 17208 (2014)

    CAS  Google Scholar 

  39. S.G. Mohamed, S.Y. Attia, H.H. Hassan, Microporous Mesoporous Mater. 251, 26 (2017)

    CAS  Google Scholar 

  40. G. Xu, Z. Zhang, X. Qi, X. Ren, S. Liu, Q. Chen, Z. Huang, J. Zhong, Ceram. Int. 44, 120 (2018)

  41. Q. Gao, J. Wang, B. Ke, J. Wang, Y. Li, Ceram. Int. 44, 18770 (2018)

    CAS  Google Scholar 

  42. M. Su, C. He, K. Shih, Ceram. Int. 42, 14793 (2016)

    CAS  Google Scholar 

  43. X. Zhou, Y. Zhong, M. Yang, Q. Zhang, J. Wei, Z. Zhou, ACS Appl. Mater. Interfaces 7, 12022 (2015)

    CAS  Google Scholar 

  44. X. Leng, L. Wu, Y. Liu, C. Li, S. Wei, Z. Jiang, G. Wang, J. Lian, Q. Jiang, J. Mater. Chem. A 4, 17171 (2016)

    CAS  Google Scholar 

  45. J. Xu, P. Gao, T.S. Zhao, Energy Environ. Sci. 5, 5333 (2012)

    CAS  Google Scholar 

  46. L.S. Lobo, S. Kalainathan, A.R. Kumar, Superlattice. Microst. 88, 116 (2015)

    CAS  Google Scholar 

  47. M.M. Kadam, R. Lokare, K.M.V.K. Kireeti, V.G. Gaikar, N.I. Jha, RSC Adv. 4, 62737 (2014)

    CAS  Google Scholar 

  48. S. Perumbilavil, P. Sankar, T.P. Rose, R. Philip, Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4928124

  49. B. Dehghanzad, M.K.R. Aghjeh, O. Rafeie, A. Tavakoli, A.J. Oskooie, RSC Adv. 4, 62737 (2015)

    Google Scholar 

  50. H. Gao, J. Xiang, Y. Cao, Nanotechnology 28, 1 (2017)

    CAS  Google Scholar 

  51. F. Zhang, C. Yuan, X. Lu, L. Zhang, Q. Che, X. Zhang, J. Power Sources 203, 250 (2012)

    CAS  Google Scholar 

  52. T. Winie, A.K. Arof, in Physical Chemistry of Macromolecules, eds. by C.H. Chan, C.H. Chua, S. Thomas (Apple Academic Press, Florida, 2014), p. 335

  53. Z. Huang, Z. Zhang, X. Qi, X. Ren, G. Xu, P. Wan, X. Sun, H. Zhang, Nanoscale 8, 13273 (2016)

    CAS  Google Scholar 

  54. Z. Zhang, Y. Liu, Z. Huang, L. Ren, X. Qi, X. Wei, J. Zhong, Phys. Chem. Chem. Phys. 17, 20795 (2015)

    CAS  Google Scholar 

  55. S. Khalid, C. Cao, L. Wang, Y. Zhu, Sci. Rep. 6, 1 (2016)

  56. G. He, J. Li, H. Chen, J. Shi, X. Sun, S. Chen, X. Wang, Mater. Lett. 82, 61 (2012)

    CAS  Google Scholar 

  57. A. Daraghmeh, S. Hussain, I. Saadeddin, L. Servera, E. Xuriguera, A. Cornet, A. Cirera, Nanoscale Res. Lett. 12, 639 (2017)

    Google Scholar 

  58. B. Zhu, S. Tang, S. Vongehr, H. Xie, J. Zhu, X. Meng, Chem. Commun. 52, 2624 (2016)

    CAS  Google Scholar 

  59. N.R. Chodankar, D.P. Dubal, Y. Kwon, D. Kim, NPG Asia Mater. (2017). https://doi.org/10.1038/am.2017.145

Download references

Acknowledgements

The authors wish to thank the Ministry of Science and Technology Taiwan and Universiti Teknologi MARA Malaysia for supporting this work through MOSTI07-2221-E-009-130 and 600-IRMI/PERDANA 5/3 BESTARI (040/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan Winie.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saaid, F.I., Arsyad, A., Azman, N.S.H. et al. The synergistic effect of iron cobaltite compare to its single oxides as cathode in supercapacitor. J Electroceram 44, 183–194 (2020). https://doi.org/10.1007/s10832-020-00209-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-020-00209-4

Keywords

Navigation