Skip to main content
Log in

Effect of particles size on the characteristics of wet deposits during electrophoretic deposition

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The suspensions of nanometer (NT) and micrometer (MT) sized titania powders were prepared in isopropanol. Triethanolamine (TEA) and acetic acid (AA) were used to enhance the surface charge of particles. The characteristics of wet NT and MT deposits such as thickness, packing fraction and electrical resistivity were determined at 60 and 200 V during electrophoretic deposition (EPD). The packing fraction of MT (≈ 0.15–0.3) deposits was higher than NT (≈0.05–0.1) ones leading to their less shrinkage and so less cracking during drying. Despite the lower concentration of H+TEA ions in MT deposit, their resistivity was smaller than NT deposits at 60 V due to the higher mobility of H+TEA ions in them. The mobility of H+TEA ions in both NT and MT deposits formed at 200 V was low but the resistivity of NT deposits was smaller due to the higher concentrations of H+TEA ions in them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N.P. Mellott, C. Durucan, C.G. Pantano, M. Guglielmi, Commercial and laboratory prepared titanium dioxide thin films for self-cleaning glasses: photocatalytic performance and chemical durability. Thin Solid Films 502, 112–120 (2006)

    Article  Google Scholar 

  2. S.Y. Wu, S.K. Su, C.J. Chang, C.H. Huang, Sol-gel-synthesized titania-vanadia nanocrystal films for triple-functional window coatings. Ceram. Int. 42, 17610–17619 (2016)

    Article  Google Scholar 

  3. L. Zhao et al., Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32, 5706–5716 (2011)

    Article  Google Scholar 

  4. P. Evans, D.W. Sheel, Photoactive and antibacterial TiO2 thin films on stainless steel. Surf. Coat. Technol. 201, 9319–9324 (2007)

    Article  Google Scholar 

  5. K. Page et al., Titania and silver–titania composite films on glass—potent antimicrobial coatings. J. Mater. Chem. 17, 95–104 (2007)

    Article  Google Scholar 

  6. M. Aflori et al., Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones, 178, 1339–1346 (2013)

  7. N. S. Leyland et al., Highly efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections. Sci. Rep., 6, Article number: 24770 (2016)

  8. X. Wang, R. Yu, K. Wang, G. Yang, H. Yu, Facile template-induced synthesis of Ag-modified TiO2 hollow octahedra with high photocatalytic activity. Chin. J. Catal. 36, 1211–2218 (2015)

    Article  Google Scholar 

  9. R. Quesada-Cabrera, A. Mills, C. O’Rourke, Action spectra of P25 TiO2 and a visible light absorbing, carbon-modified titania in the photocatalytic degradation of stearic acid. Appl. Catal. B. 150-151, 338–344 (2014)

    Article  Google Scholar 

  10. X.X. Wang, S. Hayakawa, K. Tsuru, A. Osaka, Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials 23, 1353–1357 (2002)

    Article  Google Scholar 

  11. A. Gao et al., The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials 35, 4223–4235 (2014)

    Article  Google Scholar 

  12. A.S. Besov, A.V. Vorontsov, V.N. Parmon, Fast adsorptive and photocatalytic purification of air from acetone and dimethyl methylphosphonate by TiO2 aerosol. Appl. Catal B-Environ. 89, 602–612 (2009)

    Article  Google Scholar 

  13. A. Fernandez, G. Lassaletta, V.M. Jimenez, A. Justo, H. Tahiri, Y. Ait-ichou, Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl. Catal B-Environ. 7, 49–63 (1995)

    Article  Google Scholar 

  14. G. Plesch, M. Vargová, U.F. Vogtb, M. Gorbár, K. Jesenák, Zr doped anatase supported reticulated ceramic foams for photocatalytic water purification. Mater. Res. Bull. 47, 1680–1686 (2012)

    Article  Google Scholar 

  15. J.M. Calderon-Moreno, Effect of polyethylene glycol on porous transparent TiO2 films prepared by sol–gel method. Ceram. Int. 40, 2209–2220 (2014)

    Article  Google Scholar 

  16. L. Ćurković, H.O. Ćurkovićb, S. Salopekc, M.M. Renjoa, S. Šegotad, Enhancement of corrosion protection of AISI 304 stainless steel by nanostructured sol–gel TiO2 films. Corros. Sci. 77, 176–184 (2013)

    Article  Google Scholar 

  17. A. Ibrahim, R.S. Lima, C.C. Berndt, B.R. Marple, Fatigue and mechanical properties of nanostructured and conventional titania (TiO2) thermal spray coatings. Surf. Coat. Technol. 201, 7589–7596 (2007)

    Article  Google Scholar 

  18. R.S. Lima, B.R. Marple, Enhanced ductility in thermally sprayed titania coating synthesized using a nanostructured feedstock. Mater. Sci. Eng. A 395, 269–280 (2005)

    Article  Google Scholar 

  19. N. Berger-Keller, G. Bertrand, C. Filiatre, C. Meunier, C. Coddet, Microstructure of plasma-sprayed titania coatings deposited from spray-dried powder. Surf. Coat. Technol. 168, 281–290 (2003)

    Article  Google Scholar 

  20. R. Jaworski, L. Pawlowski, F. Roudet, S. Kozerski, F. Petit, Characterization of mechanical properties of suspension plasma sprayed TiO2 coatings using scratch test. Surf. Coat. Technol. 202, 2644–2653 (2008)

    Article  Google Scholar 

  21. D. Wei, Y. Zhou, D. Jia, Y. Wang, Chemical treatment of TiO2-based coatings formed by plasma electrolytic oxidation in electrolyte containing nano-HA, calcium salts and phosphates for biomedical applications. Appl. Surf. Sci. 254, 1775–1782 (2008)

    Article  Google Scholar 

  22. C.J. Tavares et al., PVD-grown photocatalytic TiO2 thin films on PVDF substrates for sensors and actuators applications. Thin Solid Films 517, 1161–1166 (2008)

    Article  Google Scholar 

  23. A. Mills, N. Elliott, I.P. Parkin, S.A. O'Neill, R.J. Clark, Novel TiO2 CVD films for semiconductor photocatalysis. J. Photochem. Photobiol. A. 151, 171–179 (2002)

    Article  Google Scholar 

  24. L. Ren, Y.P. Zeng, D. Jiang, Preparation of porous TiO2 sheets by aqueous tape casting and their photocatalytic activation. Int. J. Appl. Ceram. Technol. 5, 505–512 (2008)

    Article  Google Scholar 

  25. J.A. Lewis, Colloidal processing of ceramics. J. Am. Ceram. Soc. 83, 2341–2359 (2000)

    Article  Google Scholar 

  26. F.Q. Tang, L. Yu, X. Huang, J.K. Guo, Characterization of adsorption and distribution of polyelectrolyte on stability of Nano-zirconia suspensions by auger electron spectroscopy. Nanostruct. Mater. 11, 441–450 (1999)

    Article  Google Scholar 

  27. F.F. Lange, Powder processing science and Technology for Increased Reliability. J. Am. Ceram. Soc. 72, 3–15 (1989)

    Article  Google Scholar 

  28. E. Laarz, M. Carlsson, B. Vivien, M. Johnsson, M. Nygren, L. Bergstrom, Colloidal processing of Al2O3-based composites reinforced with TiN and TiC particulates, whiskers and nanoparticles. J. Eur. Ceram. Soc. 21, 1027–1035 (2001)

    Article  Google Scholar 

  29. S. Cabanas-Polo, A.R. Boccaccini, Electrophoretic deposition of nanoscale TiO2: technology and applications. J. Eur. Ceram. Soc. 36, 265–283 (2016)

    Article  Google Scholar 

  30. M. Farrokhi-Rad, T. Shahrabi, Electrophoretic deposition of titania nanoparticles: sticking parameter determination by an in-situ study of the EPD kinetics. J. Am. Ceram. Soc. 95, 3434–3440 (2012)

    Article  Google Scholar 

  31. A.G.G. Toh, R. Cai, D.L. Butler, The influence of surface topography on the photocatalytic activity of electrophoretically deposited titanium dioxide thin films. Wear 266, 585–588 (2009)

    Article  Google Scholar 

  32. M.J. Santillán, F. Membrives, N. Quaranta, A.R. Boccaccini, Characterization of TiO2 nanoparticle suspensions for electrophoretic deposition. J. Nanopart. Res. 10, 787–793 (2008)

    Article  Google Scholar 

  33. C. Kaya, F. Kaya, B. Su, B. Thomas, A.R. Boccaccini, Structural and functional thick ceramic coatings by electrophoretic deposition. Surf. Coat. Technol. 191, 303–310 (2005)

    Article  Google Scholar 

  34. M. Farrokhi-Rad, M. Ghorbani, Electrophoretic deposition of titania nanoparticles in different alcohols: kinetics of deposition. J. Am. Ceram. Soc. 94, 2354–2361 (2011)

    Article  Google Scholar 

  35. M. Farrokhi-Rad, T. Shahrabi, S. Khanmohammadi, Electrophoretic deposition of titania nanoparticles: wet density of deposits during EPD. Bull. Mater. Sci. 37, 1039–1046 (2014)

    Article  Google Scholar 

  36. L. Besra, M. Liu, A review on fundamental and applications of electrophoretic deposition. Prog. Mater. Sci. 52, 1–61 (2007)

    Article  Google Scholar 

  37. P.J. Kemery, J.K. Steehler, P.W. Bohn, Electric field mediated transport in nanometer diameter channels. Langmuir 14, 2884–2889 (1998)

    Article  Google Scholar 

  38. G. Anne, B. Neirinck, K. Vanmeensel, O. Van der Biest, J. Vleugels, Origin of the potential drop over the deposit during electrophoretic deposition. J. Am. Ceram. Soc. 89, 823–828 (2006)

    Article  Google Scholar 

  39. D.L. Pavia, G.M. Lampman, G.S. Kriz, J.A. Vyvyan, in Introduction to Spectroscopy, ed. by L. Lockwood, B. Kirksey, E. Woods, K. Brown, B. Kauser. Infrared spectroscopy (Thomson Learning Inc, New York, 2001), pp. 15–104

    Google Scholar 

  40. M. Bohmer, In situ observation of two-dimensional clustering during electrophoretic deposition. Langmuir 12, 5747–5750 (1996)

    Article  Google Scholar 

  41. Y. Solomentsev, M. Bohmer, J.L. Anderson, Particle clustering and pattern formation during electrophoretic deposition: a hydrodynamic model. Langmuir 13, 6058–6068 (1997)

    Article  Google Scholar 

  42. S.R. Yeh, M. Seul, B.I. Shraiman, Assembly of ordered colloidal aggregates by electric-field-induced fluid flow. Nature 386, 57–59 (1997)

    Article  Google Scholar 

  43. C. Ji, W. Lan, P. Xiao, Fabrication of Yttria-stabilized zirconia coatings using electrophoretic deposition: packing mechanism during deposition. J. Am. Ceram. Soc. 91, 1102–1109 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Farrokhi-Rad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrokhi-Rad, M. Effect of particles size on the characteristics of wet deposits during electrophoretic deposition. J Electroceram 40, 211–218 (2018). https://doi.org/10.1007/s10832-018-0122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0122-5

Keywords

Navigation