Skip to main content
Log in

Single step combustion synthesis of nanocrystalline scheelite Ba0.5Sr0.5MoO4 for optical and LTCC applications: Its structural, optical and dielectric properties

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The synthesis of nanocrystalline Ba0.5Sr0.5MoO4 by an auto-igniting combustion technique is reported. The structural characterization done by X-ray diffraction, Fourier transform Raman spectroscopy and infrared spectroscopy reveals that the as-prepared powder itself is phase pure with tetragonal structure. The particle size determined from Transmission electron microscopy is 21 nm. The ultraviolet-visible absorption spectrum of the sample shows maximum absorption in the UV region and the optical band gap determined is 4.71 eV. The photoluminescence spectrum of Ba0.5Sr0.5MoO4 shows green emission, associated with the perfect order and crystallinity of the sample. The sample is sintered at a relatively low temperature of 815 °C. Scanning electron microscopy showed that the sample achieved 95 % of its theoretical density. The dielectric constant and loss factor of the sample measured at 5 MHz is found to be 10.58 and 1.66.×10−3 at room temperature. The effect of change in composition of A2+ site of scheelite AMO4 compounds comparative are also presented. The experimental results show that nano Ba0.5Sr0.5MoO4 is an excellent luminescent material and also a promising ‘Low temperature Co-fired Ceramic’. Also it is inferred that we can fine tune both optical and dielectric properties to desired values according to our requirements by adjusting the cationic stoichiometric ratio in [AO8] octahedron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. C. Sczancoski, L. S. Cavalcante, M. R. Joya, J. A. Varela, P. S. Pizani, E. Longo, Chem Eng J 140, 632 (2008)

    Article  Google Scholar 

  2. J. C. Sczancoski, L. S. Cavalcante, N. L. Marana, R. O. da Silva, R. L. Tranquilin, M. R. Joya, P. S. Pizani, J. A. Varela, J. R. Sambrano, M. Siu Li, E. Longo, J. Andrése, Curr Appl Phys 10(2), 614 (2010)

    Article  Google Scholar 

  3. W. Streifer and P. Saltz, IEEE J Quantum Electron 9 (6), 563 (1973).

  4. S. E. Harris, S. T. K. Nieh, Appl Phys Lett 17, 223 (1970)

    Article  Google Scholar 

  5. Y. Zhang, F. Yang, J. Yang, Y. Tang, P. Yuan, Solid State Commun 133(12), 759 (2005)

    Article  Google Scholar 

  6. H. Yu, Z. Li, A. J. Lee, J. Li, H. Zhang, J. Wang, H. M. Pask, J. A. Piper, M. Jiang, Opt Lett 36(4), 579 (2011)

    Article  Google Scholar 

  7. T. T. Basiev, A. A. Sobol, Y. K. Voronko, P. G. Zverev, Opt Mater 15(3), 205 (2000)

    Article  Google Scholar 

  8. M. Ishii and M. Kobayashi, Prog Cryst Growth Ch 23, 245 (1991).

  9. P. Cerny, H. Jelinkova, P. G. Zverev, T.T. Basiev, Prog Quant Electron 28, 113 (2004).

  10. Geun-Kyu Choi, Jeong-Ryeol Kim, Sung-Hun Yoon and Kug-Sun Hong, J. Eur. Ceram. Soc. 27 (8–9), 3063 (2007)

  11. S. L. Porto, E. Longo, P. S. Pizani, T. M. Boschi, L. G. P. Simões, S. J. G. Lima, J. M. Ferreira, L. E. B. Soledade, J. W. M. Espinoza, M. R. Cassia-Santos, M. A. M. A. Maurera, C. A. Paskocimas, I. M. G. Santos, A. G. Souza, J Solid State Chem 181, 1876 (2008)

    Article  Google Scholar 

  12. L. Wei, Y. Liu, Y. Lu, T. Wu, J Nanomater 6, 1 (2012)

    Article  Google Scholar 

  13. V. D. Zhuravlev, O. G. Reznitskikh, Y. A. Velikodnyi, T. A. Patrusheva, O. V. Sivtsova, J Solid State Chem 84, 2785 (2011)

    Article  Google Scholar 

  14. W. S. Cho, M. Yoshimura, J Appl Phys 83, 518 (1998)

    Article  Google Scholar 

  15. W. Shi, J. Chen, S. Gao, J Chin Ceram Soc 39, 219 (2011)

    Google Scholar 

  16. M. R. Vaezi, Sensor Mater 20, 211 (2008)

    Google Scholar 

  17. G. Narsinga Rao, J. W. Chen, S Neeleshwar, Y. Y. Chen and M. K. Wu, J. Phys. D: Appl. Phys. 42, 095003 (2009)

  18. E. Tomaszewicz, S. M. Kaczmarek, H. Fuks, Mater Chem Phys 122, 595 (2010)

    Article  Google Scholar 

  19. D. Rangappa, T. Fujiwara, T. Watanabe, M. Yoshimura, Mater Chem Phys 109, 217 (2008)

    Article  Google Scholar 

  20. R. C. Patil, S. Radhakrishnan, S. Pethkar, K. Vijaymohanan, J Mater Res 16, 7 (2001)

    Article  Google Scholar 

  21. J.J Kingsley, K. C Patil, Mater. Lett., 6, 427 (1988)

  22. K. C Patil, M. S Hedge, Tanu Rattan, S. T Aruna, World Scientific Publishing Co. Pte. Ltd., Singapore, (2008).

  23. L.S. Cavalcante, J.C. Sczancoski, R.L. Tranquilin, M.R. Joya, P.S. Pizani, J.A. Varela, E. Longo, J Phys Chem Solids 69, 2674 (2008)

  24. T. T. Basiev, A. A. Sobol, Y. U. K. Voronko, P. G. Zverev, Opt Mater 15, 205 (2000)

    Article  Google Scholar 

  25. C S Lim, Mater. Res. Bull. 48, 3805. (2013)

  26. J. K. Thomas, S. Vidya, Sam Solomon and K. Joy, IOP Conf. Series: Materials Science and Engineering 23, 012031 (2011)

  27. S. Vidya, Annamma John, Sam Solomon and J.K. Thomas, Adv. in Mater. Res. 1, 191 (2012)

  28. J. Tauc, Mater Res Bull 3(1), 37 (1968)

    Article  Google Scholar 

  29. W. F. Zhang, Z. Yin, M. S. Zhang, Z. L. Du, W. C. Chen, J Phys Condens Matter 11, 5655 (1999)

    Article  Google Scholar 

  30. W. F. Zhang, Z. Yin, M. S. Zhang, Appl Phys A Mater Sci Process 70, 93 (2000)

    Article  Google Scholar 

  31. H. W. Eng, P. W. Barnes, B. M. Auer, P. M. Woodward, J Solid State Chem 175, 94 (2003)

    Article  Google Scholar 

  32. A. P. A. Marques, D. M. A. de Melo, E. Longo, C. A. Paskocimas, P. S. Pizani, E. R. Leite, J Solid State Chem 178, 2346 (2005)

    Article  Google Scholar 

  33. P. Afanasiev, Mater Lett 614, 622 (2007)

    Google Scholar 

  34. A. B. Campos, A. Z. Simões, E. Longo, J. A. Varela, V. M. Longo, A. T. de Figueiredo, F. S. De Vicente, A. C. Hernandes, Appl Phys Lett 91, 051923 (2007)

    Article  Google Scholar 

  35. A.P.A. Marques, F.V. Motta, E.R. Leite, P.S. Pizani, J.A. Varela, E. Longo, D.M.A.de Melo, J. Appl. Phys. 104, 043505 (2008)

  36. J. Liu, X. Huang, Y. Li, Z. Li, J Mater Chem 17, 2754 (2007)

    Article  Google Scholar 

  37. L. Chen, Y. Gao, Chem Eng J 131, 181 (2007)

    Article  Google Scholar 

  38. J. Liu, J. Ma, B. Lin, Y. Ren, X. Jiang, J. Tao, X. Zhu, Ceram Int 34, 1557 (2008)

    Article  Google Scholar 

  39. Q. Wang, J. Huo, Y. Zheng, S. Pang, Z. He, Opt Mater 35, 1146 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Council of Scientific and Industrial Research (CSIR), New Delhi for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidya, S., Solomon, S. & Thomas, J.K. Single step combustion synthesis of nanocrystalline scheelite Ba0.5Sr0.5MoO4 for optical and LTCC applications: Its structural, optical and dielectric properties. J Electroceram 36, 142–149 (2016). https://doi.org/10.1007/s10832-016-0028-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-016-0028-z

Keywords

Navigation