Skip to main content

Advertisement

Log in

Slow-gamma frequencies are optimally guarded against effects of neurodegenerative diseases and traumatic brain injuries

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We introduce a computational model for the cellular level effects of firing rate filtering due to the major forms of neuronal injury, including demyelination and axonal swellings. Based upon experimental and computational observations, we posit simple phenomenological input/output rules describing spike train distortions and demonstrate that slow-gamma frequencies in the 38–41 Hz range emerge as the most robust to injury. Our signal-processing model allows us to derive firing rate filters at the cellular level for impaired neural activity with minimal assumptions. Specifically, we model eight experimentally observed spike train transformations by discrete-time filters, including those associated with increasing refractoriness and intermittent blockage. Continuous counterparts for the filters are also obtained by approximating neuronal firing rates from spike trains convolved with causal and Gaussian kernels. The proposed signal processing framework, which is robust to model parameter calibration, is an abstraction of the major cellular-level pathologies associated with neurodegenerative diseases and traumatic brain injuries that affect spike train propagation and impair neuronal network functionality. Our filters are well aligned with the spectrum of dynamic memory fields including working memory, visual consciousness, and other higher cognitive functions that operate in a frequency band that is - at a single cell level - optimally guarded against common types of pathological effects. In contrast, higher-frequency neural encoding, such as is observed with short-term memory, are susceptible to neurodegeneration and injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adalbert, R., Nogradi, A., Babetto, E., Janeckova, L., Walker, S.A., Kerschensteiner, M., Misgeld, T., Coleman, M.P. (2009). Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies. BRAIN, 132, 402–416.

    Article  PubMed  Google Scholar 

  • Adams, J.H., Jennett, B., Murray, L.S., Teasdale, G.M., Gennarelli, T.A., Graham, D.I. (2011). Neuropathological findings in disabled survivors of a head injury. Journal of Neurotrauma, 28, 701–709.

    Article  PubMed  Google Scholar 

  • Browne, K.D., Chen, X.H., Meaney, D.F., Smith DH. (2011). Mild traumatic brain injury and diffuse axonal injury in swine. Journal of Neurotrauma, 28(9), 1747–1755.

    Article  PubMed  PubMed Central  Google Scholar 

  • Browne, K.D., Chen, X.H., Meaney, D.F. (2011). Smith DH Mild traumatic brain injury and diffuse axonal injury in swine. Journal of Neurotrauma, 28(9), 1747–1755.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardin, J.A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.H., Moore, C.I. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459, 663–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colgin, L.L. (2016). Rhythms of the hippocampal network. Nature Reviews Neuroscience, 17, 239–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colgin, L.L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., Moser, M.B., Moser, E.I. (2009). Frequency of gamma oscillations routes flow of information in the hippocampus. Nature, 462, 353–357.

    Article  CAS  PubMed  Google Scholar 

  • Crick, F., & Koch, C. (1990). Some reflections on visual awareness. Cold Spring Harbor Symposia on Quantitative Biology, 55, 953–962.

    Article  CAS  PubMed  Google Scholar 

  • Crick, F., & Koch, C. (1990). Towards a neurobiological theory of consciousness. Seminars in the Neurosciences, 2, 263–275.

    Article  Google Scholar 

  • Crick, F., & Koch, C. (1992). The problem of consciousness. Scientific American, 26, 153–159.

    Google Scholar 

  • Christodoulou, C., DeLuca, J., Ricker, J.H., Madigan, N.K., Bly, B.M., Lange, G., Kalnin, A.J., Liu, W.C., Steffener, J., Diamond, B.J., Ni, A.C. (2001). Functional magnetic resonance imaging of working memory impairment after traumatic brain injury Journal of Neurology. Neurosurgery & Psychiatry, 71(2), 161–168.

    Article  CAS  Google Scholar 

  • Daianu, M., Jacobs, R.E., Town, T., Thompson, P.M. (2016). Axonal diameter and density estimated with 7-tesla hybrid diffusion imaging in transgenic alzheimer rats. SPIE Proceedings, 9784, 1–6.

    Google Scholar 

  • Dayan, P., & Abbot, L.F. (2001). Theoretical neuroscience. Cambridge: MIT Press.

    Google Scholar 

  • De Stefano, N., Matthews, P.M., Antel, J.P., Preul, M., Francis, G., Arnold, D.L. (1995). Chemical pathology of acute demyelinating lesions and its correlation with disability. Annals of Neurology, 38(6), 901–909.

    Article  PubMed  Google Scholar 

  • Dikranian, K., Cohen, R., Donald, C.M., Pan, Y., Brakefield, D., Bayly, P., Parsadanian, A. (2008). Mild traumatic brain injury to the infant mouse causes robust white matter axonal degeneration which precedes apoptotic death of cortical and thalamic neurons. Experimental Neurology, 211, 551–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edlow, B.L., Copen, W.A., Izzy, S., van der Kouwe, A., Glenn, M.B., Greenberg, S.M., Greer, D.M., Wu, O. (2016). Longitudinal diffusion tensor imaging detects recovery of fractional anisotropy within traumatic axonal injury lesions. Neurocritical Care, 24(3), 342–352.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan, J., & Kreutzberger, E. (1998). Automatic local smoothing for spectral density estimation. Scandinavian Journal of Statistics, 25(2), 359–369.

    Article  Google Scholar 

  • Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9, 474–480.

    Article  PubMed  Google Scholar 

  • Fries, P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual Reviews in Neuroscience, 32, 209–224.

    Article  CAS  Google Scholar 

  • Fries, P., Nikolic, D., Singer, W. (2007). The gamma cycle. Trends in Neuroscience, 30, 309–316.

    Article  CAS  Google Scholar 

  • Fries, P., Reynolds, J.H., Rorie, A.E., Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 29, 1560–1563.

    Article  Google Scholar 

  • Friese, M.A., Schattling, B., Fugger, L. (2014). Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nature Reviews Neurology, 10, 225–238.

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., Massey, J.T. (1982). On the relations between the directions of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neuroscience, 2, 1527–1537.

    Article  CAS  PubMed  Google Scholar 

  • Gold, I. (1999). Does 40-Hz oscillation play a role in visual consciousness Consciousness and Cognition, 8, 186–195.

    Article  CAS  PubMed  Google Scholar 

  • Gray, C.M., Konig, P., Engel, A.K., Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338, 334–337.

    Article  CAS  PubMed  Google Scholar 

  • Hanell, A., Greer, J.E., McGinn, M.J., Povlishock, J.T. (2015). Traumatic brain injury-induced axonal phenotypes react differently to treatment. Acta Neuropathologica, 129, 317–332.

    Article  CAS  PubMed  Google Scholar 

  • Hellman, A.N., Vahidi, B., Kim, H.J., Mismar, W., Steward, O., Jeonde, N.L., Venugopalan, V. (2010). Examination of axonal injury and regeneration in micropatterned neuronal culture using pulsed laser microbeam dissection. Lab on a Chip; 16.

  • Henry, G.H., Dreher, B., Bishop, P.O. (1974). Orientation specificity of cells in cat striate cortex. Journal of Neurophysiology, 37, 1394–1409.

    Article  CAS  PubMed  Google Scholar 

  • Hemphill, M., Dauth, S., Yu, C.J., Dabiri, B., Parker, K. (2015). Traumatic brain injury and the neuronal microenvironment: a potential role for neuropathological mechanotransduction. Neuron, 86(6), 1177–1192.

    Article  CAS  Google Scholar 

  • Henninger, N., Bouley, J., Sikoglu, E.M., An, J., Moore, C.M., King, J.A., Bowser, R., Freeman, M.R., Brown, RH Jr. (2016). Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking sarm1. BRAIN, 139, 1–12.

    Article  Google Scholar 

  • Herwerth, M., Kalluri, S.R., Srivastava, R., Kleele, T., Kenet, S., Illes, Z., Merkler, D., Bennett, J.L., Misgeld, T., Hemmer, B. (2016). In vivo imaging reveals rapid astrocyte depletion and axon damage in a model of neuromyelitis optica-related pathology. Annals of Neurology, 79, 794–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill, C.S., Coleman, M.P., Menon, D.K. (2016). Traumatic axonal injury: mechanisms and translational opportunities. Trends in Neuroscience, 39(5), 311–324.

    Article  CAS  Google Scholar 

  • Hubel, D.H., & Wiesel, T.N. (1968). Receptive fields and functional architecture of the monkey striate cortex. Journal of Physiology, 195, 215–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iaccarino, H.F., Singer, A.C., Martorell, A.J., Rudenko, A., Gao, F., Gillingham, T.Z., Mathys, H., Seo, J., Kritskiy, O., Abdurrob, F., Adaikkan, C., Canter, R.G., Rueda, R., Brown, E.N., Boyden, E.S., Tsai, L.H. (2016). Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 540, 230–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, V.E., Stewart, W., Smith, D.H. (2013). Axonal pathology in traumatic brain injury. Experimental Neurology, 246, 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Jorge, R.E., Acion, L., White, T., Tordesillas-Gutierrez, D., Pierson, R., Crespo-Facorro, B., Magnotta, V. (2012). White matter abnormalities in veterans with mild traumatic brain injury. American Journal of Psychiatry, 169(12), 1284–1291.

    Article  PubMed  Google Scholar 

  • Karlsson, P., Haroutounian, S., Polydefkis, M., Nyengaard, J.R., Jensen, T.S. (2016). Structural and functional characterization of nerve fibres in polyneuropathy and healthy subjects. Scandinavian Journal of Pain, 10, 28–35.

    Article  PubMed  Google Scholar 

  • Kirk, M., & Berntsen, D. (2017). A short cut to the past: cueing via concrete objects improves autobiographical memory retrieval in Alzheimer’s disease patients. Neuropsychologia; issn 0028–3932.

  • Koch, C., & Crick, F. (1994). Some further ideas regarding the neuronal basis of awareness. Large-scale neuronal theories of the brain. Cambridge: MIT.

    Google Scholar 

  • Kolaric, K.V., Thomson, G., Edgar, J.M., Brown, A.M. (2013). Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study. Physiological Reports, 1(3), e00,059.

    Article  Google Scholar 

  • Kornek, B., Storch, M.K., Weissert, R., Wallstroem, E., Stefferl, A., Olsson, T., Linington, C., Schmidbauer, M., Lassmann, H. (2000). Multiple sclerosis and chronic autoimmune encephalomyelitis. The American Journal of Pathology, 157, 267–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krstic, D., & Knuesel, I. (2012). Deciphering the mechanism underlying late-onset Alzheimer disease. Nature Reviews Neuroscience, 9(1), 25–34.

    Google Scholar 

  • Lachance, M., Longtin, A., Morris, C.E., Yu, N., Joos, B. (2014). Stimulation-induced ectopicity and propagation windows in model damaged axons. Journal of Computational Neuroscience, 37, 523–531.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laukka, J.J., Kamholz, J., Bessert, D. (2016). Novel pathologic findings in patients with pelizaeus-merzbacher disease. Neuroscience Letters.

  • Louis, E.D., Faust, P.L., Vonsattel, J., Honig, L.S., Rajput, A., Pahwa, R., Lyons, K.E., Ross, G.W., Elble, R.J., Erickson-Davis, C., Moskowitz, C.B., Lawton, A. (2009). Torpedoes in parkinson?s disease, alzheimer’s disease, essential tremor, and control brains. Movement Disorders, 24(11), 1600–1605.

    Article  PubMed  PubMed Central  Google Scholar 

  • Magdesian, M.H., Sanchez, F., Lopez, M., Thostrup, P., Durisic, N., Belkaid, W., Liazoghli, D., Grütter, P, Colman, R. (2012). Atomic force microscopy reveals important differences in axonal resistance to injury. Biophysical Journal, 103(3), 405–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maia, P.D., & Kutz, J.N. (2017). Reaction time impairments in decision-making networks as a diagnostic marker for traumatic brain injury and neurodegenerative diseases. Journal of Computational Neuroscience, 42(3), 323–347.

    Article  PubMed  Google Scholar 

  • Maia, P.D., Hemphill, M.A., Zehnder, B., Zhang, C., Parker, K.K., Kutz, J.N. (2015). Diagnostic tools for evaluating the impact of Focal Axonal Swellings arising in neurodegenerative diseases and/or traumatic brain injury. Journal of Neuroscience Methods, 253, 233–243.

    Article  PubMed  Google Scholar 

  • Maia, P.D., & Kutz, J.N. (2014). Compromised axonal functionality after neurodegeneration, concussion and/or traumatic brain injury. Journal of Computational Neuroscience, 27, 317–332.

    Article  Google Scholar 

  • Maia, P.D., & Kutz, J.N. (2014). Identifying critical regions for spike propagation in axon segments. Journal of Computational Neuroscience, 36(2), 141–155.

    Article  PubMed  Google Scholar 

  • Middleton, S.J., Racca, C., Cunningham, M.O., Traub, R.D., Monyer, H., Knopfel, T., Schofield, I.S., Jenkins, A., Whittington, M.A. (2008). High-frequency network oscillations in cerebellar cortex. Neuron, 58, 763–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery, S.M., & Buzsaki, G. (2007). Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proceeding of National Academy of Science, 104, 14495–14500.

    Article  CAS  Google Scholar 

  • Morrison, B., Elkin, B.S., Dolle, J.P., Yarmush, M.L. (2011). In vitro models of traumatic brain injury. Annual Reviews in Biomedical Engineering, 13(1), 91–126.

    Article  CAS  Google Scholar 

  • Munyon, C., Eakin, K.C., Sweet, J.A., Miller, J.P. (2014). Decreased bursting and novel object-specific cell firing in the hippocampus after mild traumatic brain injury. Brain Research, 1582, 220–226.

    Article  CAS  PubMed  Google Scholar 

  • Nikic, I., Merkler, D., Sorbara, C., Brinkoetter, M., Kreutzfeld, M., Bareyre, F., Bruck, W., Bishop, D., Misgeld, T., Kerschensteiner, M. (2011). A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nature Medicine, 17(4), 495–499.

    Article  CAS  PubMed  Google Scholar 

  • Palop, J.J., Chin, J., Roberson1, E.D., Wang, J., Thwin, M.T., Bien-Ly, N., Yoo, J., Ho, K.O., Yu, G.Q., Kreitzer, A., Finkbeiner, S., Noebels, J.L., Mucke, L. (2007). Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron, 55, 697–711.

  • Pesaran, B., Pezaris, J.S., Sahani, M., Mitra, P.P., Andersen, R.A. (2002). Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature Neuroscience, 5(8), 805–811.

    Article  CAS  PubMed  Google Scholar 

  • Poggio, G.F., & Talbot, W.H. (1981). Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey. Journal of Physiology, 315, 469–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, S.M., Leo, G.J., Haughton, V.M., St Aubin-Faubert, P., Bernardin, L. (1989). Correlation of magnetic resonance imaging with neuropsychological testing in multiple sclerosis. Neurology, 39, 161–66.

    Article  CAS  PubMed  Google Scholar 

  • Rapp, P.E., Keyser, D.O., Albano, A., Hernandez, R., Gibson, D.B., Zambon, R.A., Hairston, W.D., Hughes, J.D., Krystal, A., Nichols, A.S. (2015). Traumatic brain injury detection using electrophysiological methods. Frontiers in Human Neuroscience, 9(11), 1–32.

    Google Scholar 

  • Reeves, T.M., Smith, T.L., Williamson, J.C., Phillips, L.L. (2012). Unmyelinated axons show selective rostrocaudal pathology in the corpus callosum after traumatic brain injury. Journal of Neuropathology & Experimental Neurology, 71(3), 198–210.

    Article  Google Scholar 

  • Reich, D.S., Victor, J.D., Knight, B.W. (1998). The power ration and the interval map: spiking models and extracellular recordings. The Journal of Neuroscience, 18(23), 10090–100104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieke, F.M., Warland, D., van Steveninck, R.R., Bialek, W. (1995). Spikes: exploring the neural code. Cambridge: MIT Press.

    Google Scholar 

  • Rocca, M.A., Amato, M.P., De Stefano, N., Enzinger, C., Geurts, J.J., Penner, I.K., Rovira, A., Sumowski, J.F., Valsasina, P., Filippi, M. (2015). Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. The Lancet Neurology, 14(3), 302–317.

    Article  PubMed  Google Scholar 

  • Rudy, S., Maia, P.D., Kutz, J.N. (2016). Cognitive and behavioral deficits arising from neurodegeneration and traumatic brain injury: a model for the underlying role of focal axonal swellings in neuronal networks with plasticity. Journal of Systems and Integrative Neuroscience.

  • Saleem, A.B., Lien, A.D., Krumin, M., Haider, B., Roson, M.R., Ayaz, A., Reinhold, K., Busse, L., Carandini, M., Harris, K.D. (2017). Subcortical source and modulation of the narrowband gamma oscillation in mouse visual cortex. Neuron, 93, 315–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp, D.J., Scott, G., Leech, R. (2014). Network dysfunction after traumatic brain injury. Nature Reviews Neurology, 10, 156–166.

    Article  PubMed  Google Scholar 

  • Sohal, V.S., Zhang, F., Yizhar, O., Deisseroth, K. (2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459, 698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, K.J. (1994). Conduction properties of central demyelinated and remyelinated axons, and their relation to symptom production in demyelinating disorders. Eye, 8, 224–237.

    Article  PubMed  Google Scholar 

  • Squire, L.R., Stark, C.E., Clark, R.E. (2004). The medial temporal lobe. Annual Reviews in Neuroscience, 27, 279–306.

    Article  CAS  Google Scholar 

  • Tagliaferro, P., & Burke, R.E. (2016). Retrograde axonal degeneration in parkinson disease. Journal of Parkinson’s Disease, 6, 1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang-Schomer, M.D., Johnson, V.E., Baas, P.W., Stewart, W., Smith, D.H. (2012). Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Experimental Neurology, 233, 364–372.

    Article  PubMed  Google Scholar 

  • Tang-Schomer, M.D., Patel, A., Bass, P.W., Smith, D.H. (2010). Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. The FASEB Journal, 24(5), 1401–1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapp, B.D., & Nave, K.A. (2008). Multiple sclerosis: An immune or neurodegenerative disorder Annual Review Neuroscience, 31(1), 247–269.

    Article  CAS  Google Scholar 

  • Trapp, B.D., Peterson, J.W., Ransohoff, R.M., Rudick, R.A., Mork, S., Bo, L., Mork, S., Bo, L. (1998). Axonal transection in the lesions of multiple sclerosis. The New England Journal of Medicine, 338, 278–285.

    Article  CAS  PubMed  Google Scholar 

  • Verden, D., & Macklin, W.B. (2016). Neuroprotection by central nervous system remyelination: molecular, cellular, and functional considerations. Journal of Neuroscience Research, 94, 1411–1420.

    Article  CAS  PubMed  Google Scholar 

  • Verret, L., Mann, E.O., Hang, G.B., Barth, A.M.I., Cobos, I., Ho, K., Devidze, N., Masliah, E., Kreitzer, A.C., Mody, I., Mucke, L., Palop, J.J. (2012). Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell, 149, 708–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wandell, B.A. (1995). Foundations of vision Sunderland, MA: Sinauer Assciates.

  • Wang, J., Hamm, R.J., Povlishock, J.T. (2011). Traumatic axonal injury in the optic nerve: evidence for axonal swelling, disconnection, dieback and reorganization. Journal of Neurotrauma, 28(7), 1185–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waxman, S.G. (2006). Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nature Reviews Neuroscience, 7, 932–941.

    Article  CAS  PubMed  Google Scholar 

  • Zlochiver, S. (2010). Persistent reflection underlies ectopic activity in multiple sclerosis: a numerical study. Biological Cybernnetics, 102, 181–196.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro D. Maia.

Additional information

Action Editor: Ingo Bojak

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 116 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, P.D., Raj, A. & Kutz, J.N. Slow-gamma frequencies are optimally guarded against effects of neurodegenerative diseases and traumatic brain injuries. J Comput Neurosci 47, 1–16 (2019). https://doi.org/10.1007/s10827-019-00714-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-019-00714-8

Keywords

Navigation