Skip to main content
Log in

Spiking resonances in models with the same slow resonant and fast amplifying currents but different subthreshold dynamic properties

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The generation of spiking resonances in neurons (preferred spiking responses to oscillatory inputs) requires the interplay of the intrinsic ionic currents that operate at the subthreshold voltage level and the spiking mechanisms. Combinations of the same types of ionic currents in different parameter regimes may give rise to different types of nonlinearities in the voltage equation (e.g., parabolic- and cubic-like), generating subthreshold (membrane potential) oscillations patterns with different properties. These nonlinearities are not apparent in the model equations, but can be uncovered by plotting the voltage nullclines in the phase-plane diagram. We investigate the spiking resonant properties of conductance-based models that are biophysically equivalent at the subthreshold level (same ionic currents), but dynamically different (parabolic- and cubic-like voltage nullclines). As a case study we consider a model having a persistent sodium and a hyperpolarization-activated (h-) currents, which exhibits subthreshold resonance in the theta frequency band. We unfold the concept of spiking resonance into evoked and output spiking resonance. The former focuses on the input frequencies that are able to generate spikes, while the latter focuses on the output spiking frequencies regardless of the input frequency that generated these spikes. A cell can exhibit one or both types of resonances. We also measure spiking phasonance, which is an extension of subthreshold phasonance (zero-phase-shift response to oscillatory inputs) to the spiking regime. The subthreshold resonant properties of both types of models are communicated to the spiking regime for low enough input amplitudes as the voltage response for the subthreshold resonant frequency band raises above threshold. For higher input amplitudes evoked spiking resonance is no longer present in these models, but output spiking resonance is present primarily in the parabolic-like model due to a cycle skipping mechanism (involving mixed-mode oscillations), while the cubic-like model shows a better 1:1 entrainment. We use dynamical systems tools to explain the underlying mechanisms and the mechanistic differences between the resonance types. Our results demonstrate that the effective time scales that operate at the subthreshold regime to generate intrinsic subthreshold oscillations, mixed-mode oscillations and subthreshold resonance do not necessarily determine the existence of a preferred spiking response to oscillatory inputs in the same frequency band. The results discussed in this paper highlight both the complexity of the suprathreshold responses to oscillatory inputs in neurons having resonant and amplifying currents with different time scales and the fact that the identity of the participating ionic currents is not enough to predict the resulting patterns, but additional dynamic information, captured by the geometric properties of the phase-space diagram, is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Acker, C.D., Kopell, N., & White, J.A. (2003). Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. Journal of Computational Neuroscience, 15, 71–90.

    Article  PubMed  Google Scholar 

  • Art, J.J., Crawford, A.C., & Fettiplace, R. (1986). Electrical resonance and membrane currents in turtle cochlear hair cells. Hearing Research, 22, 31–36.

    Article  CAS  PubMed  Google Scholar 

  • Augustin, M., Ladenbauer, J., & Obermayer, K. (2013). How adaptaion shapes spike rate oscillations in recurrent neuronal networks. Frontiers in Computational Neuroscience, 7, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beatty, J., Song, S.C., & Wilson, C.J. (2015). Cell-type-specific resonances shape the response of striatal neurons to synaptic inputs. Journal of Neurophysiology, 113, 688–700.

    Article  PubMed  Google Scholar 

  • Berke, J. D. (2011). Functional properties of striatal fast-spiking interneurons. Front Systems Neuroscience, 5, 45.

    Article  Google Scholar 

  • Boehlen, A., Heinemann, U., & Erchova, I. (2010). The range of intrinsic frequencies represented by medial entorhinal cortex stellate cells extends with age. The Journal of Neuroscience, 30, 4585–4589.

    Article  CAS  PubMed  Google Scholar 

  • Boehlen, A., Henneberger, C., Heinemann, U., & Erchovav, I. (2013). Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II, stellate cells. Journal of Neurophysiology, 109, 445–463.

    Article  PubMed  Google Scholar 

  • Broicher, T., Malerba, P., Dorval, A.D., Borisyuk, A., Fernandez, F.R., & White, J.A. (2012). spike phase locking in CA1 pyramidal neurons depends on background conductance and firing rate. The Journal of Neuroscience, 32, 14374–14388.

    Article  CAS  PubMed  Google Scholar 

  • Brumberg, J.C., & Gutkin, B.S. (2007). Cortical pyramidal cells as non-linear oscillators: experimental and spike-generation theory. Brain Research, 1171, 122–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunel, N., Hakim, V., & Richardson, M. J. (2003). Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. Physical Review E, 67, 051916.

    Article  Google Scholar 

  • Burden, R.L., & Faires, J.D. (1980). Numerical analysis. Boston: PWS Publishing Company.

    Google Scholar 

  • Carandini, M., Mechler, F., Leonard, C.S., & Movshon, J.A. (1996). Spike train encoding by regular-spiking cells of the visual cortex. Journal of Neurophysiology, 76, 3425–3441.

    CAS  PubMed  Google Scholar 

  • Chen, Y., Li, H., Rotstein, G., & Nadim, F. (2016). Membrane potential resonance frequency directly influences network frequency through gap junctions. Journal of Neurophysiology, 116, 1554–1563.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dayan, P., & Abbott, L.F. (2001). Theoretical neuroscience. Cambridge: The MIT Press.

    Google Scholar 

  • Dorval, A.D.J.r., & White, J.A. (2005). Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. Journal of Neuroscience, 25, 10025–10028.

    Article  CAS  PubMed  Google Scholar 

  • Drover, J.D., Tohidi, V., Bose, A., & Nadim, F. (2007). Combining synaptic and cellular resonance in a feedforward neuronal network. Neurocomputing, 70, 2041–2045.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dwyer, J., Lee, H., Martell, A., & van Drongelen, W. (2012). Resonance in neocortical neurons and networks. The European Journal of Neuroscience, 36, 3698–3708.

    Article  PubMed  Google Scholar 

  • D’Angelo, E., Nieus, T., Maffei, A., Armano, S., Rossi, P., Taglietti, V., Fontana, A., & Naldi, G. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow K + - dependent mechanism. The Journal of Neuroscience, 21, 759–770.

    PubMed  Google Scholar 

  • D’Angelo, E., Koekkoek, S.K.E., Lombardo, P., Solinas, S., Ros, E., Garrido, J., Schonewille, M., & De Zeeuw, C.I. (2009). Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience, 162, 805–815.

    Article  PubMed  Google Scholar 

  • Engel, T.A., Schimansky-Geier, L., Herz, A.V., Schreiber, S., & Erchova, I. (2008). Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex. Journal of Neurophysiology, 100, 1576–1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erchova, I., Kreck, G., Heinemann, U., & Herz, A.V.M. (2004). Dynamics of rat entorhinal cortex layer II and III cells: Characteristics of membrane potential resonance at rest predict oscillation properties near threshold. The Journal of Physiology, 560, 89–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ermentrout, G.B., & Terman, D. (2010). Mathematical foundations of neuroscience. Berlin: Springer.

    Book  Google Scholar 

  • Fox, D., Tseng, H., Rotstein, H.G., & Nadim, F. (2013). Membrane potential resonance of bursting neuron captured with an ICa/Ih biophysical model using multi-objective evolutionary algorithms. Society for Neuroscience Abstracts, 372.08, 79.

    Google Scholar 

  • Fox, D., Tseng, H., Rotstein, H.G., & Nadim, F. (2014a). Using multi-objective evolutionary algorithms to predict the parameters that determine membrane resonance in a biophysical model of bursting neurons. BMC Neuroscience, 15, 79.

    Article  Google Scholar 

  • Fox, D.M., Tseng, H.-A., Rotstein, H.G., & Nadim, F. (2014b). The role of a persistent inward current in shaping membrane resonance properties of different neuron types in an oscillatory network. Society for Neuroscience Abstracts, 215, 06.

    Google Scholar 

  • Fox, D.M., Rotstein, H.G., & Nadim, F. (2016). Neuromodulation produces complex changes in resonance profiles of neurons in an oscillatory network. Society for Neuroscience Abstracts, 811, 08.

    Google Scholar 

  • Fox, D., Tseng, H., Smolinsky, T., Rotstein, H.G., & Nadim, F. (2017). Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Computational Biology, 13, e1005565.

  • FitzHugh, R. (1961). Impulses and physiological states in models of nerve membrane. Biophysical Journal, 1, 445–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gastrein, P., Campanac, E., Gasselin, C., Cudmore, R.H., Bialowas, A., Carlier, E., Fronzaroli-Molinieres, L., Ankri, N., & Debanne, D. (2011). The role of hyperpolarization-activated cationic current in spike-time precision and intrinsic resonance in cortical neurons in vitro. The Journal of Physiology, 589, 3753–3773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutfreund, Y., Yarom, Y., & Segev, I. (1995). Subthreshold oscillations and resonant frequency in Guinea pig cortical neurons: Physiology and modeling. The Journal of Physiology, 483, 621–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas, J.S., & White, J.A. (2002). Frequency selectivity of layer II, stellate cells in the medial entorhinal cortex. Journal of Neurophysiology, 88, 2422–2429.

    Article  PubMed  Google Scholar 

  • Harish, O., & Golomb, D. (2010). Control of the firing patterns of vibrissa motoneurons by modulatory and phasic synaptic inputs: a modeling study. Journal of Neurophysiology, 103, 2684–2699.

    Article  PubMed  Google Scholar 

  • Heys, J.G., Giacomo, L.M., & Hasselmo, M.E. (2010). Cholinergic modulation of the resonance properties of stellate cells in layer II, of the medial entorhinal. Journal of Neurophysiology, 104, 258–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heys, J.G., Schultheiss, N.W., Shay, C.F., Tsuno, Y., & Hasselmo, M.E. (2012). Effects of acetylcholine on neuronal properties in entorhinal cortex. Frontiers in Behavioral Neuroscience, 6, 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgs, M.H., & Spain, W.J. (2009). Conditional bursting enhances resonant firing in neocortical layer 2-3 pyramidal neurons. Journal of Neuroscience, 29, 1285–1299.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conductance and excitation in nerve. The Journal of Physiology, 117, 500–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, H., Vervaeke, K., & Storm, J.F. (2002). Two forms of electrical resonance at theta frequencies generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. Journal of Physiology, 545.3, 783–805.

    Article  Google Scholar 

  • Hu, H., Vervaeke, K., Graham, J.F., & Storm, J.L. (2009). Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons. Journal of Neuroscience, 29, 14472–14483.

    Article  CAS  PubMed  Google Scholar 

  • Hutcheon, B., & Yarom, Y. (2000). Resonance, oscillations and the intrinsic frequency preferences in neurons. Trends in Neurosciences, 23, 216–222.

    Article  CAS  PubMed  Google Scholar 

  • Hutcheon, B., Miura, R.M., & Puil, E. (1996). Subthreshold membrane resonance in neocortical neurons. Journal of Neurophysiology, 76, 683–697.

    CAS  PubMed  Google Scholar 

  • Izhikevich, E.M. (2002). Resonance and selective communication via bursts in neurons having subthreshold oscillations. Bio Systems, 67, 95–102.

    Article  PubMed  Google Scholar 

  • Izhikevich, E. (2006). Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: MIT Press.

    Google Scholar 

  • Izhikevich, E.M. (2010). Hybrid spiking models. Philosophical Transactions of the Royal Society A, 368, 5061–5070.

    Article  Google Scholar 

  • Kispersky, T., White, J.A., & Rotstein, H.G. (2010). The mechanism of abrupt transition between theta and hyperexcitable spiking activity in medial entorhinal cortex layer II stellate cells. PloS One, 5, e13697.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kispersky, T.J., Fernandez, F.R., Economo, M.N., & White, J.A. (2012). Spike resonance properties in hippocampal O,-LM cells are dependent on refractory dynamics. Journal of Neuroscience, 32, 3637–3651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krupa, M., & Szmolyan, P. (2001). Relaxation oscillation and canard explosion. Journal of Difference Equations, 174, 312–368.

    Article  Google Scholar 

  • Lampl, I, & Yarom, Y. (1997). Subthreshold oscillations and resonant behaviour: Two manifestations of the same mechanism. Neuron, 78, 325–341.

    CAS  Google Scholar 

  • Lau, T., & Zochowski, M. (2011). The resonance frequency shift, pattern formation, and dynamical network reorganization via sub-threshold input. PLoS ONE, 6, e18983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledoux, E., & Brunel, N. (2011). Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs. Frontiers in Computational Neuroscience, 5, 1–17.

    Article  Google Scholar 

  • Llinás, R.R., & Yarom, Y. (1986). Oscillatory properties of Guinea pig olivary neurons and their pharmachological modulation: an in vitro study. The Journal of Physiology, 376, 163–182.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcelin, B., Becker, A., Migliore, M., Esclapez, M., & Bernard, C. (2009). h channel-dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy. Neurobiology of Disease, 33, 436–447.

    Article  CAS  PubMed  Google Scholar 

  • Maex, R., & De Schutter, E. (2003). Resonant synchronization in heterogeneous networks of inhibitory neurons. Journal of Neuroscience, 23, 10503–10514.

    CAS  PubMed  Google Scholar 

  • Mikiel-Hunter, J., Kotak, V., & Rinzel, J. (2016). High-frequency resonance in the gerbil medial superior olive. PLoS Computational Biology, 12, 1005166.

  • Moca, V.V., Nicolic, D., Singer, W., & Muresan, R. (2014). Membrane resonance enables stable robust gamma oscillations. Cerebral Cortex, 24, 119–142.

    Article  PubMed  Google Scholar 

  • Muresan, R., & Savin, C. (2007). Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits. Journal of Neurophysiology, 97, 1911–1930.

    Article  PubMed  Google Scholar 

  • Nagumo, J.S., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of IRE, 50, 2061–2070.

    Article  Google Scholar 

  • Narayanan, R., & Johnston, D. (2007). Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron, 56, 1061–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan, R., & Johnston, D. (2008). The h channel mediates location dependence and plasticity of intrinsic phase response in rat hippocampal neurons. The Journal of Neuroscience, 28, 5846–5850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan, M.F., Dudman, J.T., Dodson, P.D., & Santoro, B. (2007). HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. The Journal of Neuroscience, 27, 12440–12551.

    Article  CAS  PubMed  Google Scholar 

  • Nowak, L.G., Sanchez-Vives, M.V., & McCormick, D.A. (1997). Influence of low and high frequency inputs on spike timing in visual cortical neurons. Cerebral Cortex, 7, 487–501.

    Article  CAS  PubMed  Google Scholar 

  • Pollina, B., Benardete, D., & Noonburg, V.W. (2003). A periodically forced wilson-cowan system. SIAM Journal on Applied Mathematics, 5, 1585–1603.

    Article  Google Scholar 

  • Pike, F.G., Goddard, R.S., Suckling, J.M., Ganter, P., Kasthuri, N., & Paulsen, O. (2000). Distinct frequency preferences of different types of rat hippocampal neurons in response to oscillatory input currents. Journal of Physiology, 529, 205–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prinz, A.A., Thirumalai, V., & Marder, E. (2003). The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. The Journal of Neuroscience, 23, 943–954.

    CAS  PubMed  Google Scholar 

  • Rathour, R.K., & Narayanan, R. (2012). Inactivating ion channels augment robustness of subthreshold intrinsic response dynamics to parametric variability in hippocampal model neurons. Journal of Physiology, 590, 5629–5652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathour, R.K., & Narayanan, R. (2014). Homeostasis of functional maps in inactive dendrites emerges in the absence of individual channelostasis. Proceedings of the National Academy of Sciences of the United States of America, 111, E1787–E1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rau, F., Clemens, J., Naumov, V., Hennig, R.M., & Schreiber, S. (2015). Firing-rate resonances in the peripheral auditory system of the cricket, gryllus bimaculatus. Journal of Comparative Physiology, 201, 1075–1090.

    Article  PubMed  Google Scholar 

  • Remme, M.W.H., Lengyel, M., & Gutkin, B.S. (2012). A theoretical framework for the dynamics of multiple intrinsic oscillators in single neurons. In Schultheiss, N.W., Prinz, A.A., & Butera, R.A. (Eds.) Phase response curves in neuroscience theory, experiments and analysis (pp. 53–72). Berlin: Springer.

  • Remme, M.W.H., Donato, R., Mikiel-Hunter, J., Ballestero, J.A., Foster, S., Rinzel, J., & McAlpine, D. (2014). Subthreshold resonance properties contribute to the efficient coding of auditory spatial cues. Proceedings of the National Academy of Sciences of the United States of America, 111, E2339–E2348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson, M.J.E., Brunel, N., & Hakim, V. (2003). From subthreshold to firing-rate resonance . Journal of Neurophysiology, 89, 2538–2554.

    Article  PubMed  Google Scholar 

  • Rotstein, H.G. (2013). Preferred frequency responses to oscillatory inputs in an electrochemical cell model: linear amplitude and phase resonance. Physical Review E, 88, 062913.

    Article  Google Scholar 

  • Rotstein, H.G. (2014). Frequency preference response to oscillatory inputs in two-dimensional neural models: a geometric approach to subthreshold amplitude and phase resonance. The Journal of Mathematical Neuroscience, 4, 11.

    Article  PubMed  Google Scholar 

  • Rotstein, H.G. (2015). Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents. Journal of Computational Neuroscience, 38, 325–354.

    Article  PubMed  Google Scholar 

  • Rotstein, H.G. (2017a). The shaping of intrinsic membrane potential oscillations: positive/negative feedback, ionic resonance/amplification, nonlinearities and time scales. Journal of Computational Neuroscience, 42, 133–166.

    Article  PubMed  Google Scholar 

  • Rotstein, H.G. (2017b). Resonance modulation, annihilation and generation of antiresonance and antiphasonance in 3d neuronal systems: interplay of resonant and amplifying currents with slow dynamics. Journal of Computational Neuroscience, 43, 35–63.

  • Rotstein, H.G., & Nadim, F. (2014). Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. Journal of Computational Neuroscience, 37, 9–28.

    Article  PubMed  Google Scholar 

  • Rotstein, H.G., Oppermann, T., White, J.A., & Kopell, N. (2006). A reduced model for medial entorhinal cortex stellate cells: subthreshold oscillations, spiking and synchronization. Journal of Computational Neuroscience, 21, 271–292.

    Article  PubMed  Google Scholar 

  • Rotstein, H.G., Wechselberger, M., & Kopell, N. (2008). Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II, stellate cell model. SIAM Journal on Applied Dynamical Systems, 7, 1582–1611.

    Article  Google Scholar 

  • Rotstein, H.G., Coombes, S., & Gheorghe, A.M. (2012). Canard-like explosion of limit cycles in two-dimensional piecewise-linear models of FitzHugh-Nagumo type. SIAM Journal on Applied Dynamical Systems, 11, 135–180.

    Article  Google Scholar 

  • Schrader, M., Braune, M., & Engel, H. (1995). Dynamics of spiral waves in excitable media subjected to external periodic forcing. Physical Review E, 52, 98–109.

    Article  CAS  Google Scholar 

  • Schreiber, S., Erchova, I, Heinemann, U., & Herz, A.V. (2004). Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. Journal of Neurophysiology, 92, 408–415.

    Article  PubMed  Google Scholar 

  • Sciamanna, G., & Wilson, C.J. (2011). The ionic mechanism of gamma resonance in rat striatal fast-spiking neurons. Journal of Neurophysiology, 106, 2936–2949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp, A.A., O’Neil, M.B., Abbott, L.F., & Marder, E. (1993). The dynamic clamp: artificial conductances in biological neurons. Trends in Neurosciences, 16, 389–394.

    Article  CAS  PubMed  Google Scholar 

  • Solinas, S., Forti, L., Cesana, E., Mapelli, J., De Schutter, E., & D’Angelo, E. (2007). Fast-reset of pacemaking and theta-frequency resonance in cerebellar Golgi cells: simulations of their impact in vivo. Frontiers in Cellular Neuroscience, 1, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, S.C., Beatty, J.A., & Wilson, C.J. (2016). The ionic mechanism of membrane potential oscillations and membrane resonance in striatal lts interneurons. Journal of Neurophysiology, 116, 1752–1764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark, E., Eichler, R., Roux, L., Fujisawa, S., Rotstein, H.G., & Buzsáki, G. (2013). Inhibition-induced theta resonance in cortical circuits. Neuron, 80, 1263–1276.

    Article  CAS  PubMed  Google Scholar 

  • Tchumatchenko, T., & Clopath, C. (2014). Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance. Nature Communications, 5, 5512.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thevenin, J., Romanelli, M., Vallet, M., Brunel, N., & Erneux, T. (2011). Resonance assisted synchronization of coupled oscillators: frequency locking without phase locking. Physical Review Letters, 107, 104101.

    Article  CAS  PubMed  Google Scholar 

  • Tikidji-Hamburyan, R.A., Martínez, J.J., White, J.A., & Canavier, C. (2015). Resonant interneurons can increase robustness of gamma oscillations. Journal of Neuroscience, 35, 15682–15695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tohidi, V. (2008). Membrane resonance of pacemaker neurons of an oscillatory network. PhD Thesis. Newark: Rutgers University.

    Google Scholar 

  • Tohidi, V., & Nadim, F. (2009). Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency. Journal of Neuroscience, 29, 6427–6435.

    Google Scholar 

  • Tseng, H., & Nadim, F. (2010). The membrane potential waveform on bursting pacemaker neurons is a predictor of their preferred frequency and the network cycle frequency. The Journal of Neuroscience, 30, 10809–10819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Brederode, J.F.M., & Berger, A.J. (2008). Spike-firing resonance in hypoglossal motoneurons. Journal of Neurophysiology, 99, 2916–2928.

    Article  PubMed  PubMed Central  Google Scholar 

  • Veltz, R., & Sejnowski, T.J. (2015). Periodic forcing of stabilized E-I networks Nonlinear resonance curves and dynamics. Neural Computation, 27, 2477–2509.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vierling-Claassen, D., Siekmeier, P., Stufflebeam, S., & Kopell, N. (2008). Modeling GABA alterations in schizophrenia: a link between impared inhibition and altered gamma and beta range auditory entrainment. Journal of Neurophysiology, 99, 2656–2671.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vierling-Claassen, D., & Kopell, N. (2009). The dynamics of a periodically forced cortical microcircuit, with an application to schizophrenia. SIAM. Journal on Applied Dynamical Systems, 8, 710–733.

    Article  Google Scholar 

  • Vierling-Claassen, D., Cardin, J.A., Moore, C.I., & Jones, S.R. (2010). Computational modeling of distinct neocortical oscillations driven by cell-type selective optogenetic drive: separable resonant circuits controlled by low-threshold spiking and fast-spiking interneurons. Frontiers in Human Neuroscience, 4, 00198.

    Article  Google Scholar 

  • Wu, N., Hsiao, C.-F., & Chandler, S.H. (2001). Membrane resonance and subthreshold membrane oscillations in mesencephalic V neurons: participants in burst generation. The Journal of Neuroscience, 21, 3729–3739.

    CAS  PubMed  Google Scholar 

  • Yang, S., Lin, W., & Feng, A.A. (2009). Wide-ranging frequency preferences of auditory midbrain neurons: roles of membrane time constant and synaptic properties. The European Journal of Neuroscience, 30, 76–90.

    Article  PubMed  Google Scholar 

  • Zemankovics, R., Káli, S., Paulsen, O., Freund, T.F., & Hájos, N. (2010). Differences in subthershold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics. The Journal of Physiology, 588, 2109–2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the NSF grants DMS-1313861 and DMS-1608077 (HGR). The author thanks Eran Stark for useful discussions. The author is grateful to the Courant Institute of Mathematical Sciences at NYU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio G. Rotstein.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Nicolas Brunel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotstein, H.G. Spiking resonances in models with the same slow resonant and fast amplifying currents but different subthreshold dynamic properties. J Comput Neurosci 43, 243–271 (2017). https://doi.org/10.1007/s10827-017-0661-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-017-0661-9

Keywords

Navigation