Skip to main content
Log in

Linking dynamics of the inhibitory network to the input structure

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Networks of inhibitory interneurons are found in many distinct classes of biological systems. Inhibitory interneurons govern the dynamics of principal cells and are likely to be critically involved in the coding of information. In this theoretical study, we describe the dynamics of a generic inhibitory network in terms of low-dimensional, simplified rate models. We study the relationship between the structure of external input applied to the network and the patterns of activity arising in response to that stimulation. We found that even a minimal inhibitory network can generate a great diversity of spatio-temporal patterning including complex bursting regimes with non-trivial ratios of burst firing. Despite the complexity of these dynamics, the network’s response patterns can be predicted from the rankings of the magnitudes of external inputs to the inhibitory neurons. This type of invariant dynamics is robust to noise and stable in densely connected networks with strong inhibitory coupling. Our study predicts that the response dynamics generated by an inhibitory network may provide critical insights about the temporal structure of the sensory input it receives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Assisi, C., & Bazhenov, M. (2012). Synaptic inhibition controls transient oscillatory synchronization in a model of the insect olfactory system. Frontiers in neuroengineering, 5(7).

  • Assisi, C., Stopfer, M., & Bazhenov, M. (2011). Using the structure of inhibitory networks to unravel mechanisms of spatiotemporal patterning. Neuron, 69(2), 373–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bal, T., & Mccormick, D.A. (1993). Mechanisms of oscillatory activity in guinea-pig nucleus reticular thalami in vitro: a mammalian pacemaker. Journal of Physiology, 468, 669–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazhenov, M., & Stopfer, M. (2010). Forward and back: motifs of inhibition in olfactory processing. Neuron, 67, 357–358.

    Article  CAS  PubMed  Google Scholar 

  • Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T.J. (1999). Self-sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABAA receptor potentials. Nature neuroscience, 2(2), 168–174.

    Article  CAS  PubMed  Google Scholar 

  • Bazhenov, M., Stopfer, M., Rabinovich, M., Abarbanel, H.D., Sejnowski, T.J., & Laurent, G. (2001). Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron, 30(2), 569–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beierlein, M., Gibson, J.R., & Connors, B.W. (2003). Two dynamically distinct inhibitory networks in layer 4 of the neocortex. Journal of neurophysiology, 90(2003), 2987–3000.

    Article  PubMed  Google Scholar 

  • Beggs, J.M. (2004). Neuronal Avalanches Are Diverse and Precise Activity Patterns That Are Stable for Many Hours in Cortical Slice Cultures. Journal of Neuroscience, 24(22), 5216–5229.

    Article  CAS  PubMed  Google Scholar 

  • Beggs, J.M., & Plenz, D. (2003). Neuronal Avalanches in Neocortical Circuits. The Journal of Neuroscience, 23(35), 11167–11177.

    CAS  PubMed  Google Scholar 

  • Belykh, I., & Shilnikov, A. (2008). When Weak Inhibition Synchronizes Strongly Desynchronizing Networks of Bursting Neurons. Physical Review Letters, 101(7), 078102.

    Article  PubMed  Google Scholar 

  • Benda, J., & Herz, A.V.M. (2003). A universal model for spike-frequency adaptation. Neural computation, 15(11), 2523–64.

    Article  PubMed  Google Scholar 

  • Bonifazi, P., Goldin, M., Picardo, M.A., Jorquera, I., Cattani, A., Bianconi, G., & et al. (2009). GABAergic hub neurons orchestrate synchrony in developing hippocampal network. Science (New York, N.Y.), 326, 1419–1424.

    Article  CAS  Google Scholar 

  • Bouyer, J.J., Montaron, M.F., Vahnėe, J M, Albert, M.P., & Rougeul, A. (1987). Anatomical localization of cortical beta rhythms in cat. Neuroscience, 22(3), 863–869.

    Article  CAS  PubMed  Google Scholar 

  • Buhl, E.H., Tamás, G, & Fisahn, A. (1998). Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. The Journal of physiology, 513, 117–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, S., & Frank, L.M. (2008). New Experiences Enhance Coordinated Neural Activity in the Hippocampus. Neuron, 57(2), 303–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cinelli, A.R., & Kauer, J.S. (1992). Voltage-sensitive dyes and functional activity in the olfactory pathway. Annual review of neuroscience, 15, 321–351.

    Article  CAS  PubMed  Google Scholar 

  • Cinelli, A.R., Hamilton, K.A., & Kauer, J.S. (1995). Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. III. Spatial and temporal properties of responses evoked by odorant stimulation. Journal of neurophysiology, 73(5), 2053–2071.

    CAS  PubMed  Google Scholar 

  • Collins, J.J., & bifurcation, Stewart IN Symmetry-breaking (1992). A possible mechanism for 2:1 frequency locking in animal locomotion. J. Math. Biol., 30, 827–838.

    Article  CAS  PubMed  Google Scholar 

  • Daun, S., Rubin, J.E., & Rybak, I.A (2009). Control of oscillation periods and phase durations in half-center central pattern generators: A comparative mechanistic analysis. Journal of Computational Neuroscience, 27, 3–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature reviews Neuroscience, 11(2), 114–126.

    CAS  PubMed  Google Scholar 

  • Diesmann, M., Gewaltig, M.O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402(6761), 529–533.

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout, B. (1992). Complex dynamics in winner-take-all neural nets with slow inhibition. Neural Networks, 5(1), 415–431.

    Article  Google Scholar 

  • Ermentrout, G.B., & Kopell, N. (1994). Inhibition-Produced Patterning in Chains of Coupled Nonlinear Oscillators. SIAM Journal on Applied Mathematics, 54, 478–507.

    Article  Google Scholar 

  • Freund, T.F., & Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6, 347–470.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich, R.W., & Stopfer, M. (2001). Recent dynamics in olfactory population coding. Current Opinion in Neurobiology, 11, 468–474.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich, R.W., & Laurent, G. (2004). Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish. Journal of neurophysiology, 91(6), 2658–69.

    Article  PubMed  Google Scholar 

  • Foster, D.J., & Ma, W. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680–683.

    Article  CAS  PubMed  Google Scholar 

  • Gabriel, A., & Eckhorn, R. (2003). A multi-channel correlation method detects traveling γ-waves in monkey visual cortex. Journal of Neuroscience Methods, 131(1-2), 171–184.

    Article  PubMed  Google Scholar 

  • Gray, C.M., & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. PNAS, 86, 1698–1702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grillner, S. (2003). The motor infrastructure: from ion channels to neuronal networks. Nature Reviews Neuroscience, 4(7), 573–586.

    Article  CAS  PubMed  Google Scholar 

  • Golomb, D., & Ermentrout, G.B. (2001). Bistability in pulse propagation in networks of excitatory and inhibitory populations. Physical Review Letters, 86(18), 4179–4182.

    Article  CAS  PubMed  Google Scholar 

  • Golomb, D., Wang, X.J., & Rinzel, J. (1994). Synchronization Properties of Spindle Oscillations in a Thalamic Reticular Nucleus Model. Journal of neurophysiology, 72(3), 1109–1126.

    CAS  PubMed  Google Scholar 

  • Golubitsky, M. (1985). Stewart I Hopf bifurcation in the presence of symmetry Archive for Rational Mechanics and Analysis, (Vol. 87.

  • Golubitsky, M., Stewart, I., Buono, P.-L., & Collins, J.J. (1998). A modular network for legged locomotion Physica D, (Vol. 115.

  • Hebb, D.O. (1949). The organization of behavior. New York: Wiley.

    Google Scholar 

  • Hosler, J.S., Buxton, K.L., & Smith, B.H. (2000). Impairment of olfactory discrimination by blockade of GABA and nitric oxide activity in the honey bee antennal lobes. Behavioral Neuroscience, 114, 514–525.

    Article  CAS  PubMed  Google Scholar 

  • Ito, I., Bazhenov, M., Ong, R.C.Y., Raman, B., & Stopfer, M. (2009). Frequency Transitions in Odor-Evoked Neural Oscillations. Neuron, 64(5), 692–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen, O., Goel, P., Kopell, N., Pohja, M., Hari, R., & Ermentrout, B. (2005). On the human sensorimotor-cortex beta rhythm: Sources and modeling. NeuroImage, 26(2), 347–355.

    Article  CAS  PubMed  Google Scholar 

  • Ji, D., & Wilson, M.A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature neuroscience, 10(1), 100–107.

    Article  CAS  PubMed  Google Scholar 

  • Jones, L.M., Fontanini, A., Sadacca, B.F., Miller, P., & Katz, D.B. (2007). Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. PNAS, 104(47), 18772–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph, J., Dunn, F.A., & Stopfer, M. (2012). Spontaneous Olfactory Receptor Neuron Activity Determines Cell Response Properties. The Journal of neuroscience, 32(8), 2900–2910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi, Y., & Kubota, Y. (1993). Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. Journal of neurophysiology, 70(1), 387–396.

    CAS  PubMed  Google Scholar 

  • Kawaguchi, Y., & Kubota, Y. (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex, 7(6), 476–486.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi, Y., & Kubota, Y. (1998). Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience, 85(3), 677–701.

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick, ZP, & Ermentrout, B (2011). Sparse gamma rhythms arising through clustering in adapting neuronal networks. PLoS Computational Biology, 7(11), e1002281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kisvarday, Z.F., Beaulieu, C., & Eysel, U.T. (1993). Network of GABAergic large basket cells in cat visual cortex (area 18): Implication for lateral disinhibition. Journal of Comparative Neurology, 327, 398–415.

    Article  CAS  PubMed  Google Scholar 

  • Komarov, M.A., Osipov, G.V., & Suykens, J.A.K. (2009). Sequentially activated groups in neural networks. EPL (Europhysics Letters), 86(6), 60006.

    Article  Google Scholar 

  • Komarov, M.A., Osipov, G.V., Suykens, J.A.K., & Rabinovich, M.I. (2009). Numerical studies of slow rhythms emergence in neural microcircuits: Bifurcations and stability. Chaos, 19, 015107.

    Article  CAS  PubMed  Google Scholar 

  • Lam, Y.W., Cohen, L.B., Wachowiak, M., & Zochowski, M.R. (2000). Odors elicit three different oscillations in the turtle olfactory bulb. The Journal of neuroscience : the official journal of the Society for Neuroscience, 20(2), 749–762.

    CAS  Google Scholar 

  • Laurent, G. (2002). Olfactory network dynamics and the coding of multidimensional signals. Nature reviews Neuroscience, 3(11), 884–95.

    Article  CAS  PubMed  Google Scholar 

  • Laurent, G., & Davidowitz, H. (1994). Encoding of olfactory information with oscillating neural assemblies. Science, 265(5180), 1872–5.

    Article  CAS  PubMed  Google Scholar 

  • Laurent, G., Wehr, M., & Davidowitz, H. (1996). Temporal Representations of Odors in an Olfactory. The Journal of Neuroscuence, 16(12), 3837–3847.

    CAS  Google Scholar 

  • Lee, A.K., & Wilson, M.A. (2002). Memory of sequential experience in the hippocampus during slow wave sleep. Neuron, 36(6), 1183–1194.

    Article  CAS  PubMed  Google Scholar 

  • Leitch, B., & Laurent, G. (1993). Distribution of GABAergic synaptic terminals on the dendrites of locust spiking local interneurones. J Comp Neurol, 337(3), 461–470.

    Article  CAS  PubMed  Google Scholar 

  • Leitch, B., & Laurent, G. (1996). GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. Journal of Comparative Neurology, 372(4), 487–514.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, T.J., & Rinzel, J. (2003). Dynamics of Spiking Neurons Connected by Both Inhibitory and Electrical Coupling. Journal of Computational Neuroscience, 14, 283–309.

    Article  PubMed  Google Scholar 

  • Louie, K., & Wilson, M.A. (2001). Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron, 29(1), 145–156.

    Article  CAS  PubMed  Google Scholar 

  • MacLeod, K., Bäcker, A, & Laurent, G. (1998). Who reads temporal information contained across synchronized and oscillatory spike trains Nature, 395(6703), 693–698.

    Article  CAS  PubMed  Google Scholar 

  • Marder, E., & Calabrese, R.L. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76(3), 687–717.

    CAS  PubMed  Google Scholar 

  • Matveev, V., Bose, A., & Nadim, F. (2007). Capturing the bursting dynamics of a two-cell inhibitory network using a one-dimensional map. Journal of Computational Neuroscience, 23, 169–187.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowotny, T., & Rabinovich, M.I. (2007). Dynamical origin of independent spiking and bursting activity in neural microcircuits. Physical Review Letters, 98(March), 1–4.

    Google Scholar 

  • O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain research, 34(1), 171–175.

    Article  PubMed  Google Scholar 

  • Pinto, D.J., & Ermentrout, G.B. (2001). Spatially Structured Activity in Synaptically Coupled Neuronal Networks: II. Lateral Inhibition and Standing Pulses. SIAM Journal on Applied Mathematics, 62(1), 226–243.

    Article  Google Scholar 

  • Rabinovich, M.I., Huerta, R., Varona, P., & Afraimovich, V.S. (2006). Generation and reshaping of sequences in neural systems. Biological Cybernetics, 95, 519–536.

    Article  PubMed  Google Scholar 

  • Rinzel, J., Terman, D., Wang, X., & Ermentrout, B. (1998). Propagating activity patterns in large-scale inhibitory neuronal networks. Science (New York, NY), (Vol. 279.

  • Schoppa, N.E. (2006). Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs. Neuron, 49, 271–283.

    Article  CAS  PubMed  Google Scholar 

  • Schwabedal, J.T.C., Neiman, A.B., & Shilnikov, A.L. (2014). Robust design of polyrhythmic neural circuits. Physical Review E, 90(2), 022715.

    Article  Google Scholar 

  • Steriade, M., & Deschenes, M. (1984). The thalamus as a neuronal oscillator. Brain Research Reviews, 8, 1–63.

    Article  Google Scholar 

  • Steriade, M., Jones, E., & McCormick, D. (1997). Thalamus: organization and function. Oxford: Elsevier Science Ltd.

    Google Scholar 

  • Stopfer, M., Bhagavan, S., Smith, B.H., & Laurent, G. (1997). Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature, 390(6655), 70–74.

    Article  CAS  PubMed  Google Scholar 

  • Terman, D., Kopell, N., & Bose, A. (1998). Dynamics of two mutually coupled slow inhibitory neurons. Physica D: Nonlinear Phenomena, 117, 241–275.

    Article  Google Scholar 

  • Traub, R.D. (1982). Simulation of intrinsic bursting in CA3. The Journal of Neuroscuence, 7(5), 1233–1242.

    Article  CAS  Google Scholar 

  • Treves, A. (1993). Mean-field analysis of neuronal spike dynamics. Network: Computation in Neural Systems, 4, 259–284.

    Article  Google Scholar 

  • Ulrich, D., & Huguenard, J.R. (1997). GABA(A)-receptor-mediated rebound burst firing and burst shunting in thalamus. Journal of neurophysiology, 78(3), 1748–1751.

    CAS  PubMed  Google Scholar 

  • Van Vreeswijk, C., Abott, L.F., & Ermentrout, G.B. (1994). When Inhibition not Excitation Synchronizes Neural Firing. Journal of Computational Neuroscience, 1, 313.

    Article  CAS  PubMed  Google Scholar 

  • Von Krosigk, M., Bal, T., & McCormick, D.A. (1993). Cellular mechanisms of a synchronized oscillations in the thalamus. Science, 261, 361.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X.J., & Rinzel, J. (1992). Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons.

  • Wang, X.J., & Rinzel, J. (1993). Spindle rhythmicity in the reticularis thalami nucleus: synchronization among mutually inhibitory neurons. Neuroscience, 53(4), 899–904.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X.J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of neuroscience : the official journal of the Society for Neuroscience, 16(20), 6402–6413.

    CAS  Google Scholar 

  • Wang, Y., Toledo-Rodriguez, M., Gupta, A., Wu, C., Silderberg, G., Luo, J., & Markram, H. (2004). Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. Journal of Physiology, 561(1), 65–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren, B., & Kloppenburg, P. (2014). Rapid and Slow Chemical Synaptic Interactions of Cholinergic Projection Neurons and GABAergic Local Interneurons in the Insect Antennal Lobe. Journal of Neuroscience, 34 (39), 13039–13046.

    Article  PubMed  Google Scholar 

  • Wehr, M., & Laurent, G. (1996). Odors encoding by temporal sequences of firing in oscillating neural assemblies. Nature, 384, 162–166.

    Article  CAS  PubMed  Google Scholar 

  • Wojcik, J., Schwabedal, J., Clewley, R., & Shilnikov, A.L. (2014). Key bifurcations of bursting polyrhythms in 3-cell central pattern generators. PloS one, 9(4), e92918.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshimura, Y., & Callaway, E.M. (2005). Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature neuroscience, 8(11), 1552–1559.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from NIDCD (R01 DC012943) and ONR (MURI: N000141310672). We thank Andrey Shilnikov and Mark Stopfer for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Bazhenov.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: A. Compte

The work is supported by NIH (R01 DC012943) and ONR (N000141310672) to MB. MK acknowledges Alexander von Humboldt-Foundation, Russian Science foundation (project 14-12-00811) and ONR N00014-16-1-2252 for support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komarov, M., Bazhenov, M. Linking dynamics of the inhibitory network to the input structure. J Comput Neurosci 41, 367–391 (2016). https://doi.org/10.1007/s10827-016-0622-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-016-0622-8

Keywords

Navigation