Skip to main content
Log in

Simulation of avalanche time in thin GaN/4H–SiC heterojunction avalanche photodiodes

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A random ionization-time model is introduced to compute the avalanche time of double carrier multiplication in heterojunction avalanche photodiodes (APDs). The Monte Carlo method is employed to determine the distribution of carriers for both electron- and hole- initiated multiplications in the GaN/4H–SiC heterojunction APDs of multiplication widths, w = 0.1 and 0.2 μm, incorporating of dead space and hetero-interface effects at high electric field region with respect to time. The carriers that are injected into the GaN layer will undergo multiplication based on material-dependent electron and hole impact ionization coefficients αGaN and βGaN, then cross the heterojunction based on the probability and followed by the multiplication based on material dependent α4H–SiC and β4H–SiC in the 4H–SiC layer. The avalanche time is calculated from the instant the parent carrier enters the multiplication region until all carriers leave the multiplication region. Our model is able to show the distribution of carriers with respect to space and time, inclusive of the presence of secondary carriers due to different groups of feedback carriers and dead time. Due to potential difference at hetero-interface, the avalanche time of the GaN/4H–SiC heterojunction APDs is less than that of the GaN and 4H–SiC homojunction APDs of the same multiplication width; hence, they are good candidates for sensing and switching devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data will be available upon request.

References

  1. Monroy, E., Omnès, F., Calle, F.: Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 2(4), R33 (2003)

    Article  Google Scholar 

  2. Alaie, Z., Nejad, S.M., Yousefi, M.H.: Recent advances in ultraviolet photodetectors. Mater. Sci. Semicond. Process. 29, 16–55 (2015)

    Article  Google Scholar 

  3. Anisha, K., Usman, U.M., Muralidharan, R., Srinivasan, R., Digbijoy, N.N.: The road ahead for ultrawide bandgap solar-blind UV photodetectors. J. Appl. Phys. 131, 150901 (2022)

    Article  Google Scholar 

  4. Hayat, M.M., Kwon, O.H., Pan, Y., Sotirelis, P., Campbell, J.C., Saleh, B.E.A., Teich, M.C.: Gain-bandwidth characteristics of thin avalanche photodiodes. IEEE Trans. Electron. Device. 49(5), 770–781 (2002)

    Article  Google Scholar 

  5. Li, B., Yang, X.H., Yin, W.H., Lü, Q.Q., Cui, R., Han, Q.: A high-speed avalanche photodiode. J. Semicond. 35(7), 074009 (2014)

    Article  Google Scholar 

  6. Masahiro, N., Toshihide, Y., Fumito, N., Hideaki, M., Kimikazu, S.: High-speed avalanche photodiodes toward 100-Gbit/s per lambda era. NTT Tech Rev. 16(11), 45–51 (2018)

    Article  Google Scholar 

  7. Zhao, D.G., Jiang, D.S.: GaN based ultraviolet photodetectors Photodiodes—World Activities in 2011, pp. 333–352. InTech, London (2011)

    Google Scholar 

  8. Besendörfer, S., Meissner, E., Tajalli, A., Meneghini, M., Freitas, J.A., Derluyn, J., Medjdoub, F., Meneghesso, G., Friedrich, J., Erlbacher, T.: Vertical breakdown of GaN on Si due to Vpits. J. Appl. Phys. 127, 015701 (2020)

    Article  Google Scholar 

  9. Moresco, M., Bertazzi, F., Bellotti, E.: A full-band Monte Carlo study of gain, bandwidth and noise of GaN avalanche photodiodes. In: Numerical Simulation of Optoelectronic Device, pp. 27–28 (2010)

  10. Wesley, O.T.L., Cheang, P.L., You, A.H., Chan, Y.K.: Mean multiplication gain and excess noise factor of GaN and Al0.45Ga0.55N avalanche photodiodes. Eur. Phys. J. Appl. Phys. 92, 10301 (2020)

    Article  Google Scholar 

  11. Su, L.L., Zhou, D., Lu, H., Zhang, R., Zheng, Y.D.: Recent progress of SiC UV single photon counting avalanche photodiodes. J. Semicond. 40, 121802 (2019)

    Article  Google Scholar 

  12. Guo, X.L., Larry, B.R., Greg, T.D., Jody, A.F., Peter, M.S., Ariane, L.B., Campbell, J.C.: Demonstration of ultraviolet separate absorption and multiplication 4H–SiC avalanche photodiodes. IEEE Photon. Technol. Lett. 18(1), 136–138 (2006)

    Article  Google Scholar 

  13. Sun, C.C., A. H. You, A.H., Wong, E.K.: Multiplication gain and excess noise factor in 4H–SiC APD In: IEEE-ICSE2012 Proc. Kuala Lumpur, Malaysia, 366–369 (2012)

  14. Steinmann, P., Hull, B., Ji, I.H., Lichtenwalner, D., Edward, V.B.: Temperature dependence of avalanche breakdown in 4H–SiC devices. J. Appl. Phys. 133, 235705 (2023)

    Article  Google Scholar 

  15. Zhou, Q.G., McIntosh, D.C., Lu, Z.W., Campbell, J.C., Sampath, A.V., Shen, H.G., Wraback, M.: GaN/SiC avalanche photodiodes. Appl. Phys. Lett. 99, 131110 (2011)

    Article  Google Scholar 

  16. Cheang, P.L., Wong, E.K., Teo, L.L.: Avalanche characteristics in thin GaN avalanche photodiodes. Japan. J. Appl. Phys. 58, 082001 (2019)

    Article  Google Scholar 

  17. Ghosh, A., Ghosh, K.K.: Monte Carlo simulation of excess noise in heterojunction avalanche photodetector. Optical Quantum Electron. 40, 439–446 (2008)

    Article  Google Scholar 

  18. Cheang, P.L., Wong, E.K., Teo, L.L.: Multiplication width dependent avalanche characteristics in GaN/4H–SiC heterojunction avalanche photodiodes. Opt. Quant. Electron. 53, 554 (2021)

    Article  Google Scholar 

  19. Kou, J.Q., Tian, K.K., Chu, C.S., Zhang, Y.H., Zhou, X.Y., Feng, Z.H., Zhang, Z.H.: Optimization strategy of 4H–SiC separated absorption charge and multiplication avalanche photodiode structure for high ultraviolet detection efficiency. Nanoscale Res. Lett. 14, 396 (2019)

    Article  Google Scholar 

  20. Sampath, A.V., Zhou, Q.G., Enck, R.W., McIntosh, D., Shen, H., Campbell, J.C., Wraback, M.: P-type interface charge control layers for enabling GaN/SiC separate absorption and multiplications. Appl. Phys. Lett. 101, 093506 (2012)

    Article  Google Scholar 

  21. Sampath, A.V., Zhou, Q.G., Enck, R., Gallinat, C.S., Shen, P., Campbell. J.C., Wraback, M.: Impact of hetero-interface on the photoresponse of GaN/SiC separate absorption and multiplication avalanche photodiodes. ISDRS 2011, December 7–9, College Park, MD, USA (2011)

  22. Akturk, A., Goldsman, N., Potbhare, S., Lelis, A.: High field density-functional-theory based Monte Carlo: 4H–SiC impact ionization and velocity saturation. J. Appl. Phys. 105, 033703 (2009)

    Article  Google Scholar 

  23. Emmons, R.B., Lucovsky, G.: The frequency response of avalanching photodiodes. IEEE Trans. Electron Devices 13(3), 297–305 (1966)

    Article  Google Scholar 

  24. Hayat, M.M., Saleh, B.E.A.: Statistical properties of the impulse response function of doublecarrier multiplication avalanche photodiodes including the effect of dead space. J. Lightwave Technol. 10(10), 1415–1425 (1992)

    Article  Google Scholar 

  25. Sun, P., Hayat, M.M., Campbell, J.C., Saleh, B.E.A., Teich, M.C.: Correlation between gain and buildup-time fluctuations in ultrafast avalanche photodiodes and its effect on receiver sensitivity. In: OFC/NFOEC Technical Digest. Optical Fiber Comm. Conf, 1–3 (2005)

  26. Petticrew, J.D., Dimler, S.J., Zhou, X., Morrison, A.P., Tan, C.H., Ng, J.S.: Avalanche breakdown timing statistics for silicon single photon avalanche diodes. IEEE J. Sel. Top. Quantum Electron. 24(2), 3801506 (2018)

    Article  Google Scholar 

  27. Hadis Morkoç: Handbook of nitride semiconductors and devices. Vol. 3: GaN-based optical and electronic devices. Wiley (2009)

  28. Ong, D.S., Li, K.F., Rees, G.J., David, J.P.R., Robson, P.N.: A simple model to determine multiplication and noise in avalanche photodiodes. J. Appl. Phys. 83(6), 3426–3428 (1998)

    Article  Google Scholar 

  29. Ng, J.S., Tan, C.H., Ng, B.K., Hambleton, P.J., David, J.P.R., Rees, G.J., You, A.H., Ong, D.S.: Effect of dead space on avalanche speed [APDs]. IEEE Trans. Electron Dev. 49(4), 544–549 (2002)

    Article  Google Scholar 

  30. Cheang, P.L.: Compound heterojunction avalanche photodiode with dead space and hetero-interface effects simulated using monte carlo method. Multimedia University, PhD thesis (2021)

Download references

Funding

This work is partially funded by MoHE, FRGS/1/2017/TK04/MMU/03/5 and Multimedia University internal funding.

Author information

Authors and Affiliations

Authors

Contributions

PL Cheang and AH You helped in writing, review and editing the draft paper. PL Cheang helped in device model development, source code compilation, data collection and analysis; CC Sun and YL Yap contributed to research methodology and resources; AH You supervised and validated the study.

Corresponding author

Correspondence to A. H. You.

Ethics declarations

Conflict of interest

The authors declare that they have no financial interest and other conflict of interests in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheang, P.L., You, A.H., Yap, Y.L. et al. Simulation of avalanche time in thin GaN/4H–SiC heterojunction avalanche photodiodes. J Comput Electron 23, 314–329 (2024). https://doi.org/10.1007/s10825-024-02146-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-024-02146-9

Keywords

Navigation