Skip to main content
Log in

Combinational logic circuits based on a power- and area-efficient memristor with low variability

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The saturation of complementary metal–oxide–semiconductor (CMOS) technology in terms of area and power efficiency has given rise to advanced research on nanodevices. Memristors and their switching properties facilitate the implementation of various combinational logics and neural networks by potential replacement of the existing CMOS technology for edge computing devices. This work presents the design, implementation, and performance evaluation of memristor-based combinational logic circuits including adders, subtractors, and decoders via MATLAB Simulink and Cadence Virtuoso. In this work, we propose an optimized design of memristor-based combinational logic circuits and conduct a comparative study with the conventional method. The proposed memristor model is thoroughly validated experimentally for a high-density Y2O3-based memristive crossbar array and shows ultralow values in device-to-device and cycle-to-cycle variability. The power calculated from these circuits is reduced by more than 90% as compared to conventional CMOS technology implemented in Cadence Virtuoso. Moreover, the number of components utilized in the memristor-based logic circuits is significantly reduced in comparison to existing CMOS technology, which makes it more area-efficient and opens new avenues for the design and implementation of complex logic circuitry in few-micrometer scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The paper has no associated data.

References

  1. Neumann, J.V.: First draft of a report on the EDVAC. IEEE Ann. Hist. Comput. 15(4), 27–75 (1993). https://doi.org/10.1109/85.238389

    Article  MathSciNet  Google Scholar 

  2. Zidan, M.A., Strachan, J.P., Lu, W.D.: The future of electronics based on memristive systems. Nat. Electron. 1(1), 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8

    Article  Google Scholar 

  3. Jouppi, N.P. et al.: In-data centre performance analysis of a tensor processing unit. In: Proceedings of the 44th Annul International Symposium on Computer Architecture (ISCA), pp. 1–12 (2017)

  4. Nikonov, D.E., Young, I.A.: Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101(12), 2498–2533 (2013). https://doi.org/10.1109/JPROC.2013.2252317

    Article  CAS  Google Scholar 

  5. Nabulsi, M., Al-Husainy, M.: Using combinational circuits for control purposes. J. Comput. Sci. 5, 507 (2009). https://doi.org/10.3844/jcssp.2009.507.510

    Article  Google Scholar 

  6. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  7. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Stathopoulos, S., Khiat, A., Trapatseli, M., Cortese, S., Serb, A., Valov, I., Prodromakis, T.: Multibit memory operation of metal-oxide Bilayer memristors. Sci. Rep. 7(1), 17532 (2017). https://doi.org/10.1038/s41598-017-17785-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Duan, S., Hu, X., Wang, L., Li, C.: Memristor-based RRAM with applications. Sci. China Inf. Sci. 55, 1446–1460 (2012). https://doi.org/10.1007/s11432-012-4572-0

    Article  Google Scholar 

  10. Kvatinsky, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C.: Memristor-based material implication (IMPLY) logic: design principles and methodologies. IEEE Trans. Very Large-Scale Integr. (VLSI) Syst. 22(10), 2054–2066 (2014). https://doi.org/10.1109/TVLSI.2013.2282132

    Article  Google Scholar 

  11. Khalid, M.: Review on various memristor models, characteristics, potential applications, and future works. Trans. Electr. Electron. Mater. 20, 289 (2019). https://doi.org/10.1007/s42341-019-00116-8

    Article  Google Scholar 

  12. Kvatinsky, S., et al.: MAGIC-memristor-aided logic. IEEE Trans. Circuits Syst. II Express Briefs 61(11), 895–899 (2014). https://doi.org/10.1109/TCSII.2014.2357292

    Article  Google Scholar 

  13. Liu, G., Shen, S., Jin, P., Wang, G., Liang, Y.: Design of memristor-based combinational logic circuits. Circuits Syst. Signal Process. 40, 1–22 (2021). https://doi.org/10.1007/s00034-021-01770-1

    Article  CAS  Google Scholar 

  14. Mandal, S., Sinha, J., Chakraborty, A.: Design of memristor -CMOS based logic gates and logic circuits. In: 2nd International Conference on Innovations in Electronics, Signal Processing and Communication (IESC), Shillong, India, pp. 215–220 (2019). https://doi.org/10.1109/IESPC.2019.8902355.

  15. Gao, C., Li, T., Wang, T., Cao, X.: Memristor-based logic gate circuit. In: 2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, pp. 330–333 (2020). https://doi.org/10.1109/CCET50901.2020.9213140.

  16. Singh, T.: Hybrid Memristor-CMOS (MeMOS) based logic gates and adder circuits. arXiv [cs.ET], 1506, pp. 1–11 (2015)

  17. Kumar, S., Agrawal, R., Das, M., Jyoti, K., Kumar, P., Mukherjee, S.: Analytical model for memristive systems for neuromorphic computation. J. Phys. D Appl. Phys. (2021). https://doi.org/10.1088/1361-6463/ac07dd

    Article  Google Scholar 

  18. Kumar, S., Agarwal, A., Mukherjee, S.: Electrical performance of large-area Y2O3 memristive crossbar array with ultralow C2C variability. IEEE Trans. Electron Devices 69(7), 3660–3666 (2022). https://doi.org/10.1109/TED.2022.3172400

    Article  ADS  CAS  Google Scholar 

  19. Kumar, A., Das, M., Garg, V., Sengar, B.S., Htay, M.T., Kumar, S., Kranti, A., Mukherjee, S.: “Forming-free high-endurance Al/ZnO/Al memristor fabricated by dual ion beam sputtering. Appl. Phys. Lett. 110(253509), 1–5 (2017). https://doi.org/10.1063/1.4989802

    Article  CAS  Google Scholar 

  20. Kumar, S., Agrawal, R., Das, M., Kumar, P., Mukherjee, S.: Analytical modeling of Y2O3-based memristive system for synaptic applications. J. Phys. D Appl. Phys. 53, 305101 (2020). https://doi.org/10.1088/1361-6463/ab810e

    Article  CAS  Google Scholar 

  21. Kumar, S., Kumbhar, D.D., Park, J.H., Kamat, R.K., Dongale, T.D., Mukherjee, S.: Y2O3-based crossbar array for analog and neuromorphic computation. IEEE Trans. Electron Devices 70(2), 473–477 (2023). https://doi.org/10.1109/TED.2022.3227890

    Article  ADS  CAS  Google Scholar 

  22. Yi, S., Kendall, J.D., Williams, R.S.: Activity-difference training of deep neural networks using memristor crossbars. Nat. Electron. 6, 45–51 (2023). https://doi.org/10.1038/s41928-022-00869-w

    Article  Google Scholar 

  23. Vourkas, I., Sirakoulis, G.C.: Emerging memristor-based logic circuit design approaches: a review. IEEE Circuits Syst. Mag. 16(3), 15–30 (2016). https://doi.org/10.1109/MCAS.2016.2583673

    Article  Google Scholar 

  24. Yang, J., Pickett, M., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008). https://doi.org/10.1038/nnano.2008.160

    Article  CAS  PubMed  Google Scholar 

  25. Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E., Rogers, S.: A memristor device model. IEEE Electron Device Lett. 32, 1436–1438 (2011). https://doi.org/10.1109/LED.2011.2163292

    Article  ADS  Google Scholar 

  26. Dong, Z., Qi, D., He, Y., Xu, Z., Hu, X., Duan, S.: Easily cascaded memristor-CMOS hybrid circuit for high-efficiency Boolean logic implementation. IET Circuit Devices & Syst. 11(2), 123–134 (2017). https://doi.org/10.1142/S0218127418501493

    Article  Google Scholar 

  27. Kang, S.M., Leblebici, Y.: Cmos digital integrated circuits: analysis and design”, McGraw Hill, ISBN: 978–0–07–246053–7, (1995)

  28. Kumar, G., Datta, K.: Design of digital functional blocks using hybrid memristor structures. In: TENCON 2015–2015 IEEE Region 10 Conference, pp. 1–5 (2015). https://doi.org/10.1109/TENCON.2015.7372883.

  29. Nawaria, M., Kumar, S., Gautam, M.K., Dhakad, N.S., Singh, R., Singhal, S., Kumar, P., Vishvakarma, S.K., Mukherjee, S.: Memristor-inspired digital logic circuits and comparison with 90-/180-nm CMOS technologies. IEEE Trans. Electron Devices (2023). https://doi.org/10.1109/TED.2023.3278625

    Article  Google Scholar 

Download references

Acknowledgements

Shruti Sandip Ghodke would like to thank Narendra Singh Dhakad for providing assistant on the Cadence Virtuoso platform to evaluate the 180-nm CMOS technology outcomes. This work is partially supported by CSIR (No. 22(0841)/20/EMR-II) and JSPS Invitational Fellowship award (ID: S23062).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanjay Kumar or Shaibal Mukherjee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghodke, S.S., Kumar, S., Yadav, S. et al. Combinational logic circuits based on a power- and area-efficient memristor with low variability. J Comput Electron 23, 131–141 (2024). https://doi.org/10.1007/s10825-023-02117-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02117-6

Keywords

Navigation