Skip to main content

Advertisement

Log in

Human body cholesterol detection based on a photonic crystal fiber sensor within a hollow octagonal core configuration

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Cholesterol is the soft and pulpy fat in our body. This study investigates a novel photonic crystal fiber with a hollow octagonal core configuration for human body cholesterol sensing. The sensor is simulated and modeled based on the finite element method. The proposed sensor model is characterized by various performance parameters, including relative sensitivity, which reveals a value of 92.34% relative sensitivity at the optimum operating frequency of 3.6 THz. The model also exhibits the lowest confinement loss of 3.77 × 10−18 cm−1 at the optimum operating frequency. The proposed cholesterol sensor was modeled using hollow-core photonic crystal fiber (HC-PCF). This HC-PCF has advantages over porous-core PCF, as it provides space for an increased quantity of analytes at the core region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Jaszczak, E., Ruman, M., Narkowicz, S., Namieśnik, J., Polkowska, Ż.: Development of an analytical protocol for determination of cyanide in human biological samples based on application of ion chromatography with pulsed amperometric detection. J. Anal. Methods Chem. 2017 (2017)

  2. Wu, J., Wang, L., Wang, Q., Zou, L., Ye, B.: The novel voltammetric method for determination of hesperetin based on a sensitive electrochemical sensor. Talanta 150, 61–70 (2016)

    Article  Google Scholar 

  3. Timofeyenko, Y.G., Rosentreter, J.J., Mayo, S.: Piezoelectric quartz crystal microbalance sensor for trace aqueous cyanide ion determination. Anal. Chem. 79(1), 251–255 (2007)

    Article  Google Scholar 

  4. Buczynski, R.: Photonic crystal fibers. Acta Phys. Polon. Ser. A 106(2), 141–168 (2004)

    Article  Google Scholar 

  5. Issa, N.A., van Eijkelenborg, M.A., Fellew, M., Cox, F., Henry, G., Large, M.C.: Fabrication and study of microstructured optical fibers with elliptical holes. Opt. Lett. 29(12), 1336–1338 (2004)

    Article  Google Scholar 

  6. Pawar, A.Y., Sonawane, D.D., Erande, K.B., Derle, D.V.: Terahertz technology and its applications. Drug Invent. Today 5(2), 157–163 (2013)

    Article  Google Scholar 

  7. Podder, E., Hossain, M.B., Jibon, R.H., Bulbul, A.A.-M., Mondal, H.S.: Chemical sensing through photonic crystal fiber: sulfuric acid detection. Front. Optoelectron. 12(4), 372–381 (2019)

    Article  Google Scholar 

  8. Ademgil, H., Haxha, S.: PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications. Sensors 15(12), 31833–31842 (2015)

    Article  Google Scholar 

  9. Yakasai, I., Abas, P.E., Kaijage, S.F., Caesarendra, W., Begum, F.: Proposal for a quad-elliptical photonic crystal fiber for terahertz wave guidance and sensing chemical warfare liquids. In: Photonics, Vol. 3, p. 78. Multidisciplinary Digital Publishing Institute (2019)

  10. Jepsen, P.U., Møller, U., Merbold, H.: Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy. Opt. Express 15(22), 14717–14737 (2007)

    Article  Google Scholar 

  11. Jepsen, P.U., Jensen, J.K., Møller, U.: Characterization of aqueous alcohol solutions in bottles with THz reflection spectroscopy. Opt. Express 16(13), 9318–9331 (2008)

    Article  Google Scholar 

  12. Hasan, M.M., Sen, S., Rana, M.J., Paul, B.K., Habib, M.A., Daiyan, G.M., Ahmed, K.: Heptagonal photonic crystal fiber based chemical sensor in THz regime. In: 2019 joint 8th international conference on informatics, electronics & vision (ICIEV) and 2019 3rd international conference on imaging, vision & pattern recognition (icIVPR), IEEE, pp. 40–44 (2019)

  13. Kanmani, R., Ahmed, K., Roy, S., Ahmed, F., Paul, B.K., Rajan, M.M.: The performance of hosting and core materials for slotted core Q-PCF in terahertz spectrum. Optik 194, 163084 (2019)

    Article  Google Scholar 

  14. Ahmed, K., Ahmed, F., Roy, S., Paul, B.K., Aktar, M.N., Vigneswaran, D., Islam, M.S.: Refractive index-based blood components sensing in terahertz spectrum. IEEE Sens. J. 19(9), 3368–3375 (2019)

    Article  Google Scholar 

  15. Islam, M.S., Sultana, J., Ahmed, K., Islam, M.R., Dinovitser, A., Ng, B.W.-H., Abbott, D.: A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens. J. 18(2), 575–582 (2017)

    Article  Google Scholar 

  16. Hossain, M.B., Podder, E., Bulbul, A.A.-M., Mondal, H.S.: Bane chemicals detection through photonic crystal fiber in THz regime. Opt. Fiber Technol. 54, 102102 (2020)

    Article  Google Scholar 

  17. Abdullah Al-Mamun, B., Rayhan Habib, J., Sumon Kumar, D., Tonmoy, R., Avijit, S., Hossain, M.B.: PCF based formalin detection by exploring the optical properties in THz regime. Nanosci. Nanotechnology-Asia 10, 1–8 (2020). https://doi.org/10.2174/2210681210999200525171303

    Article  Google Scholar 

  18. Abdullah Al-Mamun, B., HossainRahul, M.B.D., Mahadi, H.: Zeonex-based Tetra-rectangular Core-photonic Crystal Fiber for NaCl Detection. Nanosci. Nanotechnology-Asia 10, 1–9 (2020). https://doi.org/10.2174/2210681210999200708141725

    Article  Google Scholar 

  19. Hossain, M. M., Talukder, M. A.: Optical magnetism in surface plasmon resonance–based sensors for enhanced performance. Plasmonics 1–8 (2020)

  20. Eid, M.M., Rashed, A.N.Z., Bulbul, A.A.-M., Podder, E.: Mono-rectangular core photonic crystal fiber (MRC-PCF) for skin and blood cancer detection. Plasmonics 16, 1–11 (2020)

    Google Scholar 

  21. Shephard, J., MacPherson, W., Maier, R., Jones, J., Hand, D., Mohebbi, M., George, A., Roberts, P., Knight, J.: Single-mode mid-IR guidance in a hollow-core photonic crystal fiber. Opt. Express 13(18), 7139–7144 (2005)

    Article  Google Scholar 

  22. Roberts, P., Couny, F., Sabert, H., Mangan, B., Williams, D., Farr, L., Mason, M., Tomlinson, A., Birks, T., Knight, J.: Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 13(1), 236–244 (2005)

    Article  Google Scholar 

  23. Pryor, R.W.: Multiphysics modeling using COMSOL®: a first principles approach. Jones & Bartlett Publishers (2009)

    Google Scholar 

  24. Pepper, D.W., Heinrich, J.C.: The finite element method: basic concepts and applications with MATLAB, MAPLE, and COMSOL. CRC Press (2017)

    Book  MATH  Google Scholar 

  25. Islam, M.S., Sultana, J., Atai, J., Abbott, D., Rana, S., Islam, M.R.: Ultra low-loss hybrid core porous fiber for broadband applications. Appl. Opt. 56(4), 1232–1237 (2017)

    Article  Google Scholar 

  26. Bulbul, A.A.-M., Imam, F., Awal, M., Mahmud, M.: A novel ultra-low loss rectangle-based porous-core PCF for efficient THz waveguidance: design and numerical analysis. Sensors 20(22), 6500 (2020)

    Article  Google Scholar 

  27. Iqbal, F., Biswas, S., Bulbul, A.A.-M., Rahaman, H., Hossain, B.M., Rahaman, E.M., Awal, A.M.: Alcohol sensing and classification using PCF-based sensor. Sens. Bio-Sens. Res. (2020). https://doi.org/10.1016/j.sbsr.2020.100384

    Article  Google Scholar 

  28. Bulbul, A.A.-M., Rahaman, H., Biswas, S., Hossain, M.B., Nahid, A.-A.: Design and numerical analysis of a PCF-based bio-sensor for breast cancer cell detection in the THz regime. Sens. Bio-Sens. Res. 30, 100388 (2020)

    Article  Google Scholar 

  29. Paul, B.K., Islam, M.S., Ahmed, K., Asaduzzaman, S.: Alcohol sensing over O+ E+ S+ C+ L+ U transmission band based on porous cored octagonal photonic crystal fiber. Photon. Sens. 7(2), 123–130 (2017)

    Article  Google Scholar 

  30. Ghazanfari, A., Li, W., Leu, M.C., Hilmas, G.E.: A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying. Addit. Manuf. 15, 102–112 (2017)

    Google Scholar 

  31. Bise, R.T., Trevor, D.J.: Sol–gel derived microstructured fiber fabrication and characterization. In: Optical fiber communication conference, Optical Society of America (2005)

  32. Cubillas, A.M., Unterkofler, S., Euser, T.G., Etzold, B.J., Jones, A.C., Sadler, P.J., Wasserscheid, P., Russell, P.S.J.: Photonic crystal fibres for chemical sensing and photochemistry. Chem. Soc. Rev. 42(22), 8629–8648 (2013)

    Article  Google Scholar 

  33. Ebendorff-Heidepriem, H., Schuppich, J., Dowler, A., Lima-Marques, L., Monro, T.M.: 3D-printed extrusion dies: a versatile approach to optical material processing. Opt. Mater. Express 4(8), 1494–1504 (2014)

    Article  Google Scholar 

  34. Pysz, D., Kujawa, I., Stępień, R., Klimczak, M., Filipkowski, A., Franczyk, M., Kociszewski, L., Buźniak, J., Haraśny, K., Buczyński, R.: Stack and draw fabrication of soft glass microstructured fiber optics. Bullet. Pol. Acad. Sci. Tech. Sci. 62(4), 667–682 (2014)

    Google Scholar 

  35. Atakaramians, S., Afshar, S., Ebendorff-Heidepriem, H., Nagel, M., Fischer, B.M., Abbott, D., Monro, T.M.: THz porous fibers: design, fabrication and experimental characterization. Opt. Express 17(16), 14053–14062 (2009)

    Article  Google Scholar 

  36. Cruz, A.L., Cordeiro, C., Franco, M.A.: 3D printed hollow-core terahertz fibers. Fibers 6(3), 43 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sk Hasane Ahammad or Ahmed Nabih Zaki Rashed.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interests. All authors have approved submission of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulbul, A.AM., Podder, E., Ahammad, S.H. et al. Human body cholesterol detection based on a photonic crystal fiber sensor within a hollow octagonal core configuration. J Comput Electron 22, 1725–1734 (2023). https://doi.org/10.1007/s10825-023-02107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02107-8

Keywords

Navigation