Skip to main content
Log in

Numerical simulation of a mixed-halide perovskite solar cell using doping gradient

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In the present work, the simulation of a perovskite solar cell with the composition FTO/SnO2/MAPbI3−xClx/PTAA/Au is performed using SCAPS-1D software. Initially, the absorber thickness, doping concentration of the absorber, charge transport layer, doping gradient and intensity are optimised to enhance the efficiency of the cell. After all optimisation, power conversion efficiency of 34.95% overall is obtained. This enhancement of solar device performance is due to proper band alignment and improved electric field. Both factors result in proper carrier transportation and reduced recombination. The simulated results are also compared with experimental results, and are in good agreement. In addition, the J–V and QE curves are compared. The outcomes of our simulations offer a method that is appropriate for cell production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request to the corresponding author.

Abbreviations

SCAPS-1D:

Solar cell capacitance simulator in one dimension

PSCs:

Perovskite solar cells

ETL:

Electron transport layer

HTL:

Hole transport layer

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

ITO:

Indium tin oxide

SnO2 :

Tin oxide

PTAA:

Poly(triaryl amine)

Au:

Gold

J sc :

Short-circuit current density

V oc :

Open-circuit voltage

FF:

Fill factor

PCE:

Power conversion efficiency

QE:

Quantum efficiency

N t :

Defect density of absorber

G :

Doping gradient

References

  1. Wu, Y., Wang, D., Liu, J., Cai, H.: Review of interface passivation of perovskite layer. Nanomaterials 11(3), 775 (2021)

    Article  Google Scholar 

  2. Duan, Q., Ji, J., Hong, X., Fu, Y., Wang, C., Zhou, K., Liu, X., Yang, H., Wang, Z.Y.: Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation. Sol. Energy 201, 555–560 (2020)

    Article  Google Scholar 

  3. Obraztsov, P.A., Bulgakova, V.V., Chizhov, P.A., Ushakov, A.A., Gets, D.S., Makarov, S.V., Bukin, V.V.: Hybrid perovskite terahertz photoconductive antenna. Nanomaterials 11(2), 313 (2021)

    Article  Google Scholar 

  4. Jamal, M.S., Bashar, M.S., Hasan, A.M., Almutairi, Z.A., Alharbi, H.F., Alharthi, N.H., Akhtaruzzaman, M.: Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: a review. Renew. Sustain. Energy Rev. 98, 469 (2018)

    Article  Google Scholar 

  5. Song, D.H., Heo, J.H., Han, H.J., You, M.S., Im, S.H.: Reproducible formation of uniform CH3NH3PbI3−xClx mixed halide perovskite film by separation of the powder formation and spin-coating process. J. Power Sources 310, 130–136 (2016)

    Article  Google Scholar 

  6. Akhundova, F., Lüer, L., Osvet, A., Hauch, J., Peters, I.M., Forberich, K., Brabec, C.: Building process design rules for microstructure control in wide-bandgap mixed halide perovskite solar cells by a high-throughput approach. Appl. Phys. Lett. 118(24), 243903 (2021)

    Article  Google Scholar 

  7. Ghahremanirad, E., Olyaee, S., Nejand, B.A., Nazari, P., Ahmadi, V., Abedi, K.: Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network. Sol. Energy 169, 498 (2018)

    Article  Google Scholar 

  8. Tong, G., Li, H., Li, G., Zhang, T., Li, C., Yu, L., Chen, K.: Mixed cation perovskite solar cells by stack-sequence chemical vapor deposition with self-passivation and gradient absorption layer. Nano Energy 48, 536 (2018)

    Article  Google Scholar 

  9. Ghahremanirad, E., Olyaee, S., Hedayati, M.: The influence of embedded plasmonic nanostructures on the optical absorption of perovskite solar cell. Photonics 6, 2 (2019)

    Article  Google Scholar 

  10. Chen, Y., Zhang, M., Li, F., Yang, Z.: Recent progress in perovskite solar cells: status and future. Coatings 13(3), 644 (2023)

    Article  Google Scholar 

  11. Wei, X., Zhang, P., Bai, Y., Chen, Q.: In Halide Perovskites for Photonics, pp. 3–1. AIP Publishing LLC., Melville, New York (2021)

    Google Scholar 

  12. Mehdi, H., Mhamdi, A., Bouazizi, A.: Effect of perovskite precursor ratios and solvents volume on the efficiency of MAPbI3-xClx mixed halide perovskite solar cells. Mater. Sci. Semicond. Process. 109, 104915 (2020)

    Article  Google Scholar 

  13. Lian, Z., Yan, Q., Gao, T., Ding, J., Lv, Q., Ning, C., Sun, J.L.: Perovskite CH3NH3PbI3 (Cl) single crystals: rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm–3. J. Am. Chem. Soc. 138(30), 9409–9412 (2016)

    Article  Google Scholar 

  14. Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J., Leijtens, T., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)

    Article  Google Scholar 

  15. Mehdi, H., Matheron, M., Mhamdi, A., Manceau, M., Roux, C., Berson, S., Bouazizi, A.: Correlation between efficiency and device characterization in MAPbI 3-x Cl x standard perovskite solar cells. J. Mater. Sci.: Mater. Electron. 31(13), 10251–10259 (2020)

    Google Scholar 

  16. Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527 (2000)

    Article  Google Scholar 

  17. Burgelman, M., Decock, K., Khelifi, S., Abass, A.: Advanced electrical simulation of thin film solar cells. Thin Solid Films 535, 296 (2013)

    Article  Google Scholar 

  18. Hazeghi, F., Ghorashi, S.M.B.: Simulation of perovskite solar cells by using CuSCN as an inorganic hole-transport material. Mater. Res. Express 6(9), 095527 (2019)

    Article  Google Scholar 

  19. Walukiewicz, W.: Amphoteric native defects in semiconductors. Appl. Phys. Lett. 54(21), 2094–2096 (1989)

    Article  Google Scholar 

  20. Bhattarai, S., Hossain, I., Maiti, M., Pandey, R., and Madan, J. (2023) Performance analysis and optimization of all-inorganic CsPbI3-based perovskite solar cell. Indian J. Phys. 1–9.

  21. Jannat, F., Ahmed, S., Alim, M.A.: Performance analysis of cesium formamidinium lead mixed halide based perovskite solar cell with MoOx as hole transport material via SCAPS-1D. Optik 228, 166202 (2021)

    Article  Google Scholar 

  22. Ritu, Gagandeep, Kumar, R., Chand, F.: Performance enhancement in MA0.7FA0.3PbI3 based perovskite solar cell by gradient doping. Optik 274, 170558 (2023)

    Article  Google Scholar 

  23. Chowdhury, M.S., Shahahmadi, S.A., Chelvanathan, P., Tiong, S.K., Amin, N., Techato, K.A., Suklueng, M.: Results in Physics 16, 102839 (2020)

    Article  Google Scholar 

  24. Islam, M., Jani, M., Rahman, S., Shorowordi, K.M., Nishat, S.S., Hodges, D., Ahmed, S.: Investigation of non-Pb all-perovskite 4-T mechanically stacked and 2-T monolithic tandem solar devices utilizing SCAPS simulation. SN Appl. Sci. 3(4), 1 (2021)

    Article  Google Scholar 

  25. Oublal, E., Ait Abdelkadir, A., Sahal, M.: J. Nanopart. Res. 24(10), 1 (2022)

    Article  Google Scholar 

  26. Yiğit Gezgin, S., Kiliç, H.Ş: The effect of Ag plasmonic nanoparticles on the efficiency of CZTS solar cell: an experimental investigation and numerical modelling. Indian J. Phys. 97(3), 779–796 (2023)

    Article  Google Scholar 

  27. Raza, E., Ahmad, Z., Aziz, F., Asif, M., Ahmed, A., Riaz, K., Al-Thani, N.J.: Numerical simulation analysis towards the effect of charge transport layers electrical properties on cesium based ternary cation perovskite solar cells performance. Sol. Energy 225, 842 (2021)

    Article  Google Scholar 

  28. Ritu, G., Kumar, R., and Chand, F. Studies3, 4.

  29. Abdelaziz, S., Zekry, A., Shaker, A., Abouelatta, M.: Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater. 101, 109738 (2020)

    Article  Google Scholar 

  30. Tara, A., Bharti, V., Sharma, S., Gupta, R.: Device simulation of FASnI3 based perovskite solar cell with Zn (O0.3, S0.7) as electron transport layer using SCAPS-1D Opt. Material 119, 111362 (2021)

    Google Scholar 

  31. Lin, L., Li, P., Jiang, L., Kang, Z., Yan, Q., Xiong, H., Qiu, Y.: Boosting efficiency up to 25% for HTL-free carbon-based perovskite solar cells by gradient doping using SCAPS simulation. Sol. Energy 215, 328 (2021)

    Article  Google Scholar 

  32. Mukherjee, I., Somay, S., Pandey, S.K.: Comprehensive device modeling and performance analysis of quantum dot-Perovskite solar cells. J. Electron. Mater. 51(4), 1524 (2022)

    Article  Google Scholar 

  33. Gomard, G., Peretti, R., Drouard, E., Meng, X., Seassal, C.: Photonic crystals and optical mode engineering for thin film photovoltaics. Opt. Express 21(103), A515–A527 (2013)

    Article  Google Scholar 

  34. Aliaghayee, M.: Optimization of the perovskite solar cell design with layer thickness engineering for improving the photovoltaic response using SCAPS-1D. J. Electron. Mater. 52(4), 2475–2491 (2023)

    Article  Google Scholar 

  35. Rai, N., Rai, S., Singh, P.K., Lohia, P., Dwivedi, D.K.: Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci.: Mater. Electron. 31(19), 16269 (2020)

    Google Scholar 

Download references

Acknowledgements

All the authors would like to thank Prof. Marc Burgelman (University of Ghent, Belgium) for providing the SCAPS-1D software.

Funding

The authors have not disclosed any funding

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the contents of the manuscript. Ritu conceptualized the text of the manuscript, and made the figures for paper. Ritu and Gagandeep contributed in writing the manuscript and which has been revised by FC and RK, and the proof reading of the manuscript has been done by RK, and the manuscript is prepared under the supervision of FC.

Corresponding author

Correspondence to Ritu.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest regarding this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritu, Gagandeep, Kumar, R. et al. Numerical simulation of a mixed-halide perovskite solar cell using doping gradient. J Comput Electron 22, 1532–1540 (2023). https://doi.org/10.1007/s10825-023-02085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02085-x

Keywords

Navigation