Skip to main content
Log in

Numerical analysis of emerging concept of perovskite/silicon heterojunction solar cells

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper presents insight into the emerging concept of planar perovskite/silicon heterojunction solar cells. Here, we report optimum efficiency of 26.46% for Pt/p-CH3NH3PbI3/n-cSi/Ag and 25.95% for Al/n-CH3NH3PbI3/p-cSi/Au heterojunction solar cells. Thickness and doping concentration optimizations of the (p/n)-CH3NH3PbI3 and (n/p)-c-Si layers were carried out using SCAPS-1D. Various front and back contact metals, including Al, Ag, Cu, Au and Pt, were analysed for these perovskite/silicon heterojunction solar cells. Al and Ag at the front contact with Au at the back contact exhibited maximum efficiency for n-CH3NH3PbI3/p-cSi heterojunction solar cells. Similarly, maximum efficiency was observed for Al and Ag at the back contact with Pt at the front contact for p-CH3NH3PbI3/n-cSi. Moreover, the impact of interface defect states on the performance was analysed considering the perovskite/silicon interface properties significantly governing the photo-generated charge carrier transport across the heterojunction. Pt/p-CH3NH3PbI3/n-cSi/Ag was more tolerant to perovskite/silicon interface defects than Al/n-CH3NH3PbI3/p-cSi/Au heterojunction solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

Data will be made available on request.

References

  1. Zohar, A., Levine, I., Gupta, S., Davidson, O., Azulay, D., Millo, O., Balberg, I., Hodes, G., Cahen, D.: What is the mechanism of MAPbI3 p-Doping by I2? Insights from optoelectronic properties. ACS Energy Lett. 2, 2408–2414 (2017). https://doi.org/10.1021/ACSENERGYLETT.7B00698/SUPPL_FILE/NZ7B00698_SI_001.PDF

    Article  Google Scholar 

  2. Zhang, H., Ji, X., Yao, H., Fan, Q., Yu, B., Li, J.: Review on efficiency improvement effort of perovskite solar cell. Sol. Energy. 233, 421–434 (2022). https://doi.org/10.1016/J.SOLENER.2022.01.060

    Article  Google Scholar 

  3. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/JA809598R/SUPPL_FILE/JA809598R_SI_001.PDF

    Article  Google Scholar 

  4. De Los, Montoya, Santos, I., Cortina-Marrero, H.J., Ruíz-Sánchez, M.A., Hechavarría-Difur, L., Sánchez-Rodríguez, F.J., Courel, M., Hu, H.: Optimization of CH3NH3PbI3 perovskite solar cells: a theoretical and experimental study. Sol. Energy. 199, 198–205 (2020). https://doi.org/10.1016/J.SOLENER.2020.02.026

    Article  Google Scholar 

  5. Best research-cell efficiency chart | photovoltaic research | NREL, https://www.nrel.gov/pv/cell-efficiency.html

  6. Correa-Baena, J.P., Saliba, M., Buonassisi, T., Grätzel, M., Abate, A., Tress, W., Hagfeldt, A.: Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017)

    Article  Google Scholar 

  7. Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H., Yamamoto, K.: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 25, 1–8 (2017). https://doi.org/10.1038/nenergy.2017.32

    Article  Google Scholar 

  8. Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., Yoshimura, N., Yamaguchi, T., Ichihashi, Y., Mishima, T., Matsubara, N., Yamanishi, T., Takahama, T., Taguchi, M., Maruyama, E., Okamoto, S.: Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4, 1433–1435 (2014). https://doi.org/10.1109/JPHOTOV.2014.2352151

    Article  Google Scholar 

  9. Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T., Fujita, K., Maruyama, E.: 24.7% Record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96–99 (2014). https://doi.org/10.1109/JPHOTOV.2013.2282737

    Article  Google Scholar 

  10. Wang, Q., Shao, Y., Xie, H., Lyu, L., Liu, X., Gao, Y., Huang, J.: Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 105, 163508 (2014). https://doi.org/10.1063/1.4899051

    Article  Google Scholar 

  11. Paul, G., Chatterjee, S., Bhunia, H., Pal, A.J.: Self-doping in hybrid halide perovskites via precursor stoichiometry: to probe the type of conductivity through scanning tunneling spectroscopy. J. Phys. Chem. C. 122, 20194–20199 (2018). https://doi.org/10.1021/ACS.JPCC.8B06968/SUPPL_FILE/JP8B06968_SI_001.PDF

    Article  Google Scholar 

  12. Shi, T., Yin, W.J., Yan, Y.: Predictions for p-type CH3NH3PbI3 perovskites. J. Phys. Chem. C. 118, 25350–25354 (2014). https://doi.org/10.1021/JP508328U/SUPPL_FILE/JP508328U_SI_001.PDF

    Article  Google Scholar 

  13. Yin, W.J., Shi, T., Yan, Y.: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014). https://doi.org/10.1063/1.4864778

    Article  Google Scholar 

  14. Frolova, L.A., Dremova, N.N., Troshin, P.A.: The chemical origin of the p-type and n-type doping effects in the hybrid methylammonium–lead iodide (MAPbI3) perovskite solar cells. Chem. Commun. 51, 14917–14920 (2015). https://doi.org/10.1039/C5CC05205J

    Article  Google Scholar 

  15. Qin, X., Zhao, Z., Wang, Y., Wu, J., Jiang, Q., You, J.: Recent progress in stability of perovskite solar cells. J. Semicond. 38, 011002 (2017). https://doi.org/10.1088/1674-4926/38/1/011002

    Article  Google Scholar 

  16. Berhe, T.A., Su, W.-N., Chen, C.-H., Pan, C.-J., Cheng, J.-H., Chen, H.-M., Tsai, M.-C., Chen, L.-Y., Dubale, A.A., Hwang, B.-J.: Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9, 323–356 (2016). https://doi.org/10.1039/C5EE02733K

    Article  Google Scholar 

  17. Cui, P., Wei, D., Ji, J., Huang, H., Jia, E., Dou, S., Wang, T., Wang, W., Li, M.: Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nat. Energy 42(4), 150–159 (2019). https://doi.org/10.1038/s41560-018-0324-8

    Article  Google Scholar 

  18. Yadav, C., Kumar, S.: Numerical simulation of novel designed perovskite/silicon heterojunction solar cell. Opt. Mater. Amst. 123, 111847 (2022). https://doi.org/10.1016/J.OPTMAT.2021.111847

    Article  Google Scholar 

  19. Devendra, K.C., Shah, D.K., Akhtar, M.S., Park, M., Kim, C.Y., Yang, O.B., Pant, B.: Numerical investigation of graphene as a back surface field layer on the performance of cadmium telluride solar cell. Molecules 26, 3275 (2021). https://doi.org/10.3390/MOLECULES26113275

    Article  Google Scholar 

  20. Jarwal, D.K., Mishra, A.K., Kumar, A., Ratan, S., Singh, A.P., Kumar, C., Mukherjee, B., Jit, S.: Fabrication and TCAD simulation of TiO2 nanorods electron transport layer based perovskite solar cells. Superlattices Microstruct. 140, 106463 (2020). https://doi.org/10.1016/J.SPMI.2020.106463

    Article  Google Scholar 

  21. Mehrabian, M., Dalir, S.: 11.73% efficient perovskite heterojunction solar cell simulated by SILVACO ATLAS software. Optik (Stuttg) 139, 44–47 (2017). https://doi.org/10.1016/J.IJLEO.2017.03.077

    Article  Google Scholar 

  22. Liu, F., Zhu, J., Wei, J., Li, Y., Lv, M., Yang, S., Zhang, B., Yao, J., Dai, S.: Numerical simulation: toward the design of high-efficiency planar perovskite solar cells. Appl. Phys. Lett. 104, 253508 (2014). https://doi.org/10.1063/1.4885367

    Article  Google Scholar 

  23. Kim, J.Y., Lee, J.W., Jung, H.S., Shin, H., Park, N.G.: High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020). https://doi.org/10.1021/ACS.CHEMREV.0C00107/ASSET/IMAGES/MEDIUM/CR0C00107_M019.GIF

    Article  Google Scholar 

  24. Yadav, C., Kumar, S.: Numerical simulation for optimization of ultra-thin n-type AZO and TiO2 Based Textured p-type c-Si heterojunction solar cells. Silicon 148(14), 4291–4299 (2021). https://doi.org/10.1007/S12633-021-01212-2

    Article  Google Scholar 

  25. Sengar, B.S., Garg, V., Kumar, A., Dwivedi, P.: Numerical simulation: design of high-efficiency planar p-n Homojunction perovskite solar cells. IEEE Trans. Electron. Devices 68, 2360–2364 (2021). https://doi.org/10.1109/TED.2021.3066454

    Article  Google Scholar 

  26. Raoui, Y., Ez-Zahraouy, H., Tahiri, N., El Bounagui, O., Ahmad, S., Kazim, S.: Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: simulation study. Sol. Energy 193, 948–955 (2019). https://doi.org/10.1016/J.SOLENER.2019.10.009

    Article  Google Scholar 

  27. Rawat, A., Sharma, M., Chaudhary, D., Sudhakar, S., Kumar, S.: Numerical simulations for high efficiency HIT solar cells using microcrystalline silicon as emitter and back surface field (BSF) layers. Sol. Energy 110, 691–703 (2014). https://doi.org/10.1016/J.SOLENER.2014.10.004

    Article  Google Scholar 

  28. Khattak, Y.H., Baig, F., Shuja, A., Beg, S., Soucase, B.M.: Numerical analysis guidelines for the design of efficient novel nip structures for perovskite solar cell. Sol. Energy 207, 579–591 (2020). https://doi.org/10.1016/J.SOLENER.2020.07.012

    Article  Google Scholar 

  29. Wang, T., Wang, P., Ding, K., Liang, Q.: Numerical simulation of carrier transporting layer free planar perovskite cells. Optik (Stuttg) 179, 1019–1026 (2019). https://doi.org/10.1016/J.IJLEO.2018.11.050

    Article  Google Scholar 

  30. Srivastava, S., Singh, S., Singh, V.K.: Bulk and interface defects analysis of n-CdS/p-Si heterojunction solar cell. Opt. Mater. (Amst) 111, 110687 (2021). https://doi.org/10.1016/J.OPTMAT.2020.110687

    Article  Google Scholar 

  31. Jamal, M.S., Shahahmadi, S.A., Chelvanathan, P., Asim, N., Misran, H., Hossain, M.I., Amin, N., Sopian, K., Akhtaruzzaman, M.: Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik (Stuttg) 182, 1204–1210 (2019). https://doi.org/10.1016/J.IJLEO.2018.12.163

    Article  Google Scholar 

  32. Green, M.A.: Accuracy of analytical expressions for solar cell fill factors. Sol. Cells 7, 337–340 (1982). https://doi.org/10.1016/0379-6787(82)90057-6

    Article  Google Scholar 

  33. Tan, K., Lin, P., Wang, G., Liu, Y., Xu, Z., Lin, Y.: Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid. State. Electron. 126, 75–80 (2016). https://doi.org/10.1016/J.SSE.2016.09.012

    Article  Google Scholar 

  34. Wu, N., Wu, Y., Walter, D., Shen, H., Duong, T., Grant, D., Barugkin, C., Fu, X., Peng, J., White, T., Catchpole, K., Weber, K.: Identifying the cause of voltage and fill factor losses in perovskite solar cells by using luminescence measurements. Energy Technol. 5, 1827–1835 (2017). https://doi.org/10.1002/ENTE.201700374

    Article  Google Scholar 

  35. Dwivedi, N., Kumar, S., Bisht, A., Patel, K., Sudhakar, S.: Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve ∼27% efficiency. Sol. Energy 88, 31–41 (2013). https://doi.org/10.1016/J.SOLENER.2012.11.008

    Article  Google Scholar 

  36. Sameera, J.N., Jhuma, F.A., Rashid, M.J.: Numerical approach to optimizing the doping concentration of the absorber layer to enhance the performance of a CdTe solar cell. Semicond. Sci. Technol. 36, 015022 (2020). https://doi.org/10.1088/1361-6641/ABCA0E

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the director of the CSIR-National Physical Laboratory, New Delhi, India, for his kind support. One of the authors, Manoj Kumar, gratefully acknowledges the University Grants Commission (UGC) of the Govt. of India for providing a Junior Research Fellowship (SRF, DEC-18-532342). The authors also acknowledge Prof. Marc Burgelman and his team at the University of Ghent (Belgium) for providing SCAPS-1D.

Funding

The authors have not received no specific grant for this research from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Kumar, S. Numerical analysis of emerging concept of perovskite/silicon heterojunction solar cells. J Comput Electron 22, 1061–1074 (2023). https://doi.org/10.1007/s10825-023-02035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02035-7

Keywords

Navigation