Skip to main content
Log in

Velocity-field characteristics of MgxZn1−xO/ZnO heterostructures

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this work, electron transport in MgxZn1−xO/ZnO heterostructures at room temperature is simulated by the ensemble Monte Carlo (EMC) method. Electron scattering mechanisms including acoustic deformation potential, piezoelectric acoustic phonon, polar optical phonon (POP), interface roughness (IFR), dislocation, electron escape (ESC) and capture (CPR) by optical phonons, and random alloy are considered in EMC. The electron drift velocity in MgxZn1−xO/ZnO heterostructures is calculated for various Mg mole fractions x (0.1–0.3) at electric fields up to 25 kV/cm. We find that no obvious velocity saturation occurs in the range of the electric field considered. The results show that ESC scattering is one of the main physical mechanisms limiting the drift velocity. On the other hand, the competition between IFR and intersubband POP scattering is found to play an important role in the change in electron drift velocity with the increasing Mg mole fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are not publicly available, but are available from the corresponding author on reasonable request.

References

  1. Chin, H., Cheng, I., Huang, C., Wu, Y., Lu, W., Lee, W., Chen, J., Chiu, K., Lin, T.: Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by rf-sputtering process. J. Appl. Phys. 108, 054503 (2010)

    Article  Google Scholar 

  2. Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T., Segawa, Y.: MgxZn1−xO as a II–VI widegap semiconductor alloy. Appl. Phys. Lett. 72, 2466–2468 (1998)

    Article  Google Scholar 

  3. Park, S., Hong, W., Kim, J., Ahn, D.: Theoretical study of a two-dimensional electron gas in wurtzite ZnO/MgZnO heterostructures and comparison with experiment. J. Korean Phys. Soc. 67, 1844–1847 (2015)

    Article  Google Scholar 

  4. Falson, J., Kozuka, Y., Uchida, M., Smet, J.H., Arima, T., Tsukazaki, A., Kawasaki, M.: MgZnO/ZnO heterostructures with electron mobility exceeding 1 × 106 cm2/Vs. Sci. Rep. 6, 26598 (2016)

    Article  Google Scholar 

  5. Ardaravicius, L., Kiprijanovic, O., Liberis, J., Matulionis, A., Li, X., Zhang, F., Wu, M., Avrutin, V., Ozgur, U., Morkoc, H.: Hot-electron drift velocity in AlGaN/AlN/ AlGaN/GaN camelback channel. Semicond. Sci. Technol. 27, 122001 (2012)

    Article  Google Scholar 

  6. Ardaravicius, L., Matulionis, A., Liberis, J., Kiprijanovic, O., Ramonas, M., Eastman, L.F., Shealy, J.R., Vertiatchikh, A.: Electron drift velocity in AlGaN/GaN channel at high electric fields. Appl. Phys. Lett. 83, 4038 (2003)

    Article  Google Scholar 

  7. Dommelen, P.: Drift velocity and the rate of carrier scattering energy in Sb-containing heterostructure lasers. Superlattices Microstruct. 98, 140–147 (2016)

    Article  Google Scholar 

  8. Sarcan, F., Mutlu, S., Cokduygulular, E., Donmez, O., Erol, A., Puustinen, J., Guina, M.: A study of electric transport in n- and p-type modulation-doped GaInNAs/GaAs quantum well structures under a high electric field. Semicond. Sci. Technol. 33, 064003 (2018)

    Article  Google Scholar 

  9. Protasov, D., Gulyaev, D., Bakarov, A., Toropov, A., Erofeev, E., Zhuravlev, K.: Increasing saturated electron-drift velocity in donor-acceptor doped pHEMT heterostructures. Tech. Phys. Lett. 44, 260–262 (2018)

    Article  Google Scholar 

  10. Begum, K., Kolvekar, S., Sankeshwar, N.: Electron mobility in MgZnO/ZnO heterojunctions. Proc. Int. Conf. Trends Appl. Phys. Mater. Sci. 1536, 447–448 (2013)

    Google Scholar 

  11. Zan, Y., Ban, S.: Electronic mobility limited by optical phonons in symmetric MgxZn1xO/ZnO quantum wells with mixed phases. Superlattices Microstruct. 150, 106782 (2021)

    Article  Google Scholar 

  12. Thongnum, A., Sa-yakanit, V., Pinsook, U.: Two-dimensional electron transport in MgZnO/ZnO heterostructures: role of interface roughness. J. Phys. D Appl. Phys. 44, 325109 (2011)

    Article  Google Scholar 

  13. Cohen, D., Ruthe, K.C., Barnett, S.A.: Transparent conducting Zn1−xMgxO:(Al, In) thin films. J. Appl. Phys. 96, 459 (2004)

    Article  Google Scholar 

  14. Sang, L., Yang, S., Liu, G., Zhao, G., Liu, C., Gu, C., Wei, H., Liu, X., Zhu, Q., Wang, Z.: Dislocation scattering in ZnMgO/ZnO heterostructures. IEEE Trans. Electron Devices 60, 2077–2079 (2013)

    Article  Google Scholar 

  15. Wang, P., Guo, L., Song, Z., Yang, Y., Shang, T., Li, J., Huang, F., Zheng, Q.: Effect of polarization roughness scattering (PRS) on two-dimensional electron transport of MgZnO/ZnO heterostructures. Phys. E 54, 341–345 (2013)

    Article  Google Scholar 

  16. Li, Q., Zhang, J., Zhang, Z., Li, F., Hou, X.: Electron transport in ZnMgO/ZnO heterostructures. Semicond. Sci. Technol. 29, 115001 (2014)

    Article  Google Scholar 

  17. Vashaei, Z., Minegishi, T., Suzuki, H., Cho, M.W., Yao, T.: Defect and interface studies of ZnO/MgxZn1-xO heterostructures. J. Phys. Chem. Solids 69, 497–500 (2008)

    Article  Google Scholar 

  18. Workie, T., Tang, P., Bao, J., Hashimoto, K.: Analysis of high electromechanical coupling coefficient zinc oxide Lame’ mode resonators and a design technique for spurious mode mitigation. Chin. J. Phys. 77, 483–496 (2022)

    Article  MathSciNet  Google Scholar 

  19. Janotti, A., Walle, C.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)

    Article  Google Scholar 

  20. Khalil, M., Goano, M., Champagne, A., Maciejko, R.: Capture and escape in quatnum wells as scattering events in Monte Carlo simulation. IEEE Photonics Technol. Lett. 8, 19–21 (1996)

    Article  Google Scholar 

  21. Ramdas, L.: Finite Element and Boundary Element Applications in Quantum Mechanics, 1st edn. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  22. He, J., Wang, P., Chen, H., Guo, X., Guo, L., Yang, Y.: Study on temperature effect on properties of ZnO/MgZnO based quantum cascade detector in mid-infrared region. Appl. Phys. Express 10, 011101 (2017)

    Article  Google Scholar 

  23. Gorczyca, I., Teisseyre, H., Suski, T., Christensen, N., Svane, A.: Structural and electronic properties of wurtzite MgZnO and BeMgZnO alloys and their thermodynamic stability. J. Appl. Phys. 120, 215704 (2016)

    Article  Google Scholar 

  24. Williamson, G., Smallman, R.: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1, 34–46 (1956)

    Article  Google Scholar 

  25. Murugesan, S., Kuppusami, P., Mohandas, E., Vijayalakshmi, M.: X-ray diffraction Rietveld analysis of cold worked austenitic stainless steel. Mater. Lett. 67, 173–176 (2012)

    Article  Google Scholar 

  26. Ashrafi, A., Segawa, Y.: Determination of Mg composition in MgxZn1xO alloy: validity of Vegard’s law. J. Vac. Sci Technol. B 23, 2030 (2005)

    Article  Google Scholar 

  27. Tanimoto, H., Yasuda, N., Taniguchi, K., Hamaguchi, C.: Monte Carlo study of hot electron transport in quantum wells. Jpn. J. Appl. Phys. 27, 563–571 (1988)

    Article  Google Scholar 

  28. Watling, J., Walker, A., Harris, J., Roberts, J.: Monte Carlo simulation of electron transport in highly delta-doped GaAs/AlGaAs quantum wells. Semicond. Sci. Technol. 13, 43–53 (1998)

    Article  Google Scholar 

  29. Jena, D., Gossard, A., Mishra, U.: Dislocation scattering in a two-dimensional electron gas. Appl. Phys. Lett. 76, 1707–1709 (2000)

    Article  Google Scholar 

  30. Look, D.C., Reynolds, D.C., Sizelove, J.R.: Electrical properties of bulk ZnO. Solid State Commun. 105, 399–401 (1998)

    Article  Google Scholar 

  31. Milano, G., D’Ortenzi, L., Bejtka, K., Ciubini, B., Porro, S., Boarino, L., Ricciardi, C.: Metal–insulator transition in single crystalline ZnO nanowires. Nanotechnology 32, 185202 (2021)

    Article  Google Scholar 

  32. Look, D.C.: Electrical and optical properties of p-type ZnO. Semicond. Sci. Technol. 20, S55 (2005)

    Article  Google Scholar 

  33. Sarasamak, K., Limpijumnong, S., Lambrecht, W.: Pressure-dependent elastic constants and sound velocities of wurtzite SiC, GaN, InN, ZnO, and CdSe, and their relation to the high-pressure phase transition: a first-principles study. Phys. Rev. B 82, 035201 (2010)

    Article  Google Scholar 

  34. Wang, P., Ma, S., Guo, L., Shang, T., Song, Z., Yang, Y.: Theoretical investigation of the impact of barrier thickness fluctuation scattering on transport characteristics in undoped MgZnO/ZnO heterostructures. Jpn. J. Appl. Phys. 54, 091102 (2015)

    Article  Google Scholar 

  35. Sasa, S., Hayafuji, T., Kawasaki, M., Nakashima, A., Koike, K., Yano, M., Inoue, M.: High-field characteristics of ZnO and ZnO/ZnMgO heterostructures. Phys. Stat. Sol. (C) 5, 115–118 (2008)

    Article  Google Scholar 

  36. Wang, P., Shan, X., Guo, L., Ma, S., Chen, H., He, J., Yang, Y.: Monte Carlo investigation of high-field electron transport characteristics in ZnMgO/ZnO heterostructures. IEEE Trans. Electron Devices 63, 517–523 (2016)

    Article  Google Scholar 

  37. Treharne, R., Phillips, L., Durose, K., Weerakkody, A., Mitrovic, I., Hall, S.: Non-parabolicity and band gap re-normalisation in Si doped ZnO. J. Appl. Phys. 115, 063505 (2014)

    Article  Google Scholar 

  38. Donmez, O., Gunes, M., Erol, A., Arikan, C., Balkan, N., Schaff, W.: The role of dislocation-induced scattering in electronic transport in GaxIn1xN alloys. Nanoscale Res. Lett. 7, 490 (2012)

    Article  Google Scholar 

Download references

Funding

This work is supported by Science and Technology Program of Guangzhou, China (Grant No. 201804010444). The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DongFeng Liu.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D. Velocity-field characteristics of MgxZn1−xO/ZnO heterostructures. J Comput Electron 22, 603–611 (2023). https://doi.org/10.1007/s10825-022-01999-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01999-2

Keywords

Navigation