Skip to main content
Log in

An improved perovskite solar cell employing InxGa1-xAs as an efficient hole transport layer

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The Spiro-OMeTAD is an excellent candidate for application as hole transport material (HTM), but its high hygroscopicity, inclination to crystallize, and fragility to moisture and heat make it unsuitable for solar cells. Thus, it is of interest to investigate other HTM candidates. In this paper, the use of p-type InGaAs as hole transport material (HTM) has been suggested to enhance the performance of perovskite-based solar cells (PSC). The simulation of a hybrid CH3NH3PbI3/InGaAs planar heterojunction perovskite solar cell is performed using the Silvaco ATLAS simulator. In order to confirm the predictability of the proposed simulation methodology, the conventional ITO/TiO2/MAPbI3/Spiro-OMeTAD structure is simulated, and shows good coherence with experimental results. The proposed design using InGaAs as HTM outperforms the conventional device in terms of short-circuit current density (JSC) of 37.2 mA/cm2, open-circuit voltage (VOC) of 1 V, fill factor (FF) of 80% and high value of efficiency. In addition, the findings show that with In content of x = 0.7 the efficiency will improve to reach a value of about 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Varadwaj, A., Varadwaj, P.R., Yamashita, K.: Organic-inorganic hybrid CH3NH3PbI3 perovskite solar cell nanoclusters: revealing ultra-strong hydrogen bonding and mulliken inner complexes and their implication in materials design. Chem. Mater. 28, 4259 (2016). https://doi.org/10.1038/srep21687

    Article  Google Scholar 

  2. Gong, J., Liang, J., Sumathy, K.: Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renew. Sustain. Energy Rev. 16, 5848–5860 (2012). https://doi.org/10.1016/j.rser.2012.04.044

    Article  Google Scholar 

  3. Abulikemu, M., Barbé, J., Labban, A.E., Eid, J., Del Gobbo, S.: Planar heterojunction perovskite solar cell based on CdS electron transport layer. J. Thin Solid Films 636, 512–518 (2017). https://doi.org/10.1016/j.tsf.2017.07.003

    Article  Google Scholar 

  4. Zhao, X., Yao, C., Gu, K., Liu, T., Xiaa, Y., Loo, Y.-L.: hole-transport material that also passivates perovskite surface defects for solar cells with improved efficiency and stability. Energy Environ. Sci. (2020). https://doi.org/10.1039/D0EE01655A

    Article  Google Scholar 

  5. Shariatinia, Z.: Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: a review. Renew. Sustain. Energy Rev. 119(C), 109608 (2020). https://doi.org/10.1016/j.rser.2019.109608

    Article  Google Scholar 

  6. Ren, G., Han, W., Deng, Y., Wu, W., Li, Z., Guo, J., Bao, H., Liu, C., Guo, W.: Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. J. Mater. Chem. A (2021). https://doi.org/10.1039/D1TA05755C

    Article  Google Scholar 

  7. Pereyra, C., Xie, H., Lira-Cantu, M.: Additive engineering for stable halide perovskite solar cells. J. Energy Chem. 60, 599–634 (2021). https://doi.org/10.1016/j.jechem.2021.01.037

    Article  Google Scholar 

  8. Lu, C., Zhang, W., Jiang, Z., Zhang, Y., Ni, C.: CuI/Spiro-OMeTAD double-layer hole transport layer to improve photovoltaic performance of perovskite solar cells. Coatings 11(8), 978 (2021). https://doi.org/10.3390/coatings11080978

    Article  Google Scholar 

  9. Madhavan, V.E., Zimmermann, I., Baloch, A.A.B., Manekkathodi, A., Belaidi, A., Tabet, N., Nazeeruddin, M.K.: CuSCN as hole transport material with 3D/2D perovskite solar cells. ACS Appl. Energy Mater. 3(1), 114–121 (2019). https://doi.org/10.1021/acsaem.9b01692

    Article  Google Scholar 

  10. Lin, L., Jiang, L., Li, P., Fan, B., Qiu, Y.: A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing. J. Phys. Chem. Solids. (2018). https://doi.org/10.1016/j.jpcs.2018.09.024

    Article  Google Scholar 

  11. Li, S., Cao, Y.L., Li, W.H., et al.: A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Met. 40, 2712–2729 (2021). https://doi.org/10.1007/s12598-020-01691-z

    Article  Google Scholar 

  12. Liu, Z., He, T., Wang, H., Song, X., Liu, H., Yang, J., Liuc, K., Mac, H.: Improving the stability of the perovskite solar cells by V2O5 modified transport layer film. RSC Adv. 7, 18456–18465 (2017). https://doi.org/10.1039/C7RA01303E

    Article  Google Scholar 

  13. Pashaei, B., Bellani, S., Shahroos, H., Bonaccorso, F.: Molecularly engineered hole-transport material for low-cost perovskite solar cells. Chem. Sci. 11, 2429–2439 (2020). https://doi.org/10.1039/C9SC05694G

    Article  Google Scholar 

  14. Lin, C.H., Sun, K.W., Liu, Q.M., Shirai, H., Lee, C.P.: Poly(3,4ethylenedioxythiophene):poly(styrenesulfonate)/GaAs hybrid solar cells with 13% power conversion efficiency using front- and back-surface field. Opt. Express 23(19), A1051–A1059 (2015). https://doi.org/10.1364/OE.23.0A1051

    Article  Google Scholar 

  15. http://www.sspectra.com/sopra.html.

  16. Liua, B., Zhaoa, X., Yub, J., Parkinc, I.P., Nakata, K.: Intrinsic intermediate gap states of TiO2 materials and their roles in charge carrier kinetics. J. Photochem. Photobiol. C Photochem. Rev. (2019). https://doi.org/10.1016/j.jphotochemrev.2019.02.001

    Article  Google Scholar 

  17. Almosni, S., Cojocaru, L., Li, D., Uchida, S., Kubo, T., Segawa, H.: Tunneling-assisted trapping as one of the possible mechanisms for the origin of hysteresis in perovskite solar cells. Energy Technol. 5, 1767–1774 (2017). https://doi.org/10.1002/ente.201700246

    Article  Google Scholar 

  18. Guo-Qiang, H., Yong-gang, Z., Yi, G.U., Ai-Zhen, L., Cheng, Z.: Performance analysis of extended wavelength InGaAs photovoltaic detectors grown with gas source MBE. J. Infrared Millim. Waves 25, 241–245 (2006)

    Google Scholar 

  19. www.silvaco.com

  20. Ganichev, S.D., Ziemann, E., Prettl, W., Yassievich, I.N., Istratov, A.A., Weber, E.R.: Distinction between the Poole-Frenkel and tunneling models of electric-field-stimulated carrier emission from deep levels in semiconductors. Phys. Rev. B 61, 10361 (2000). https://doi.org/10.1103/PhysRevB.61.10361

    Article  Google Scholar 

  21. Burke, T.M., Sweetnam, S., Vandewal, K., McGehee, M.D.: Beyond Langevin recombination: how equilibrium between free carriers and charge transfer states determines the open-circuit voltage of organic solar cells. Adv. Energy Mater. 5, 1500123 (2015). https://doi.org/10.1002/aenm.201500123

    Article  Google Scholar 

  22. Lyu, M., Yun, J.H., Cai, M., et al.: Organic–inorganic bismuth (III)-based material: a lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res. 9, 692–702 (2016). https://doi.org/10.1007/s12274-015-0948-y

    Article  Google Scholar 

  23. Qiu, W., Merckx, T., Jaysankar, M., Masse de la Huerta, C., Rakocevic, L., Zhang, W., Paetzold, U.W., Gehlhaar, R., Froyen, L., Poortmans, J., Cheyns, D., Snaith, H.J., Heremans, P.: Pinhole-free perovskite films for efficient solar modules. J. Energy Environ. Sci. (2013). https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  24. Sherkar, T.S., Momblona, C., Gil-Escrig, L., Ávila, J., Sessolo, M., Bolink, H.J., Koster, L.J.A.: Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. CS Energy Lett. 2(5), 1214–1222 (2017). https://doi.org/10.1021/acsenergylett.7b00236

    Article  Google Scholar 

  25. Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). https://doi.org/10.1038/nmat4014

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khaouani.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaouani, M., Bencherif, H. & Kourdi, Z. An improved perovskite solar cell employing InxGa1-xAs as an efficient hole transport layer. J Comput Electron 22, 394–400 (2023). https://doi.org/10.1007/s10825-022-01953-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01953-2

Keywords

Navigation