Skip to main content
Log in

Design and implementation of a two-qubit quantum comparator circuit (Q-CC)

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this article, a two-qubit quantum comparator circuit (Q-CC) is proposed. The proposed circuit is implemented using Qiskit and is designed using a Peres gate, Feynman gate, and reversible NOT gate. The complexity of the output function is reduced using logic simplification. Hence, the number of gates used to design the proposed circuit is reduced, which in turn reduces the other parameters including quantum cost, garbage output, number of gates, constant input, and delay. The quantum cost, number of gates, and delay of the proposed circuit are 18, 8, and 5, which is an improvement of 16.66%, 20%, and 37.5%, respectively, with respect to previously reported results. The proposed reversible circuit is verified using the IBM Qiskit simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Haghparast, M., Bolhassani, A.: Optimized parity preserving quantum reversible full adder/subtractor. J. Circuits, Syst. Comput. (2016). https://doi.org/10.1142/S0219749916500192

    Article  MATH  Google Scholar 

  2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Develop. 17, 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  3. Haghparast, M., Mohammadi, M., Navi, K., Eshghi, M.: Optimized reversible multiplier circuit. J. Circuits, Syst. Comput. 18, 311–323 (2009)

    Article  Google Scholar 

  4. Haghparast, M., Navi, K.: Novel reversible fault tolerant error coding and detection circuits. Int. J. Quantum Inform. 9, 723–738 (2011). https://doi.org/10.1142/S0219749911007447

    Article  MATH  Google Scholar 

  5. Feynman, R.: Quantum mechanical computers. Op. News (1985). https://doi.org/10.1364/ON.11.2.000011

    Article  Google Scholar 

  6. Peres, A.: Reversible logic and Quantum computers. Phys. Rev. (1985). https://doi.org/10.1103/PhysRevA.32.3266

    Article  MathSciNet  Google Scholar 

  7. Maity, H., Biswas, A., Bhattacharjee, A.K., Pal, A.: Quantum cost optimized design of 4-bit reversible universal shift register using reduced number of logic gate. Int. J. Quantum Inform. 16, 1850016 (2018)

    Article  MathSciNet  Google Scholar 

  8. Asadi, M.A., Mosleh, M., Haghparast, M.: An efficient design of reversible ternary full-adder/full-subtractor with low quantum cost. Quantum Inf. Process. 19, 204 (2020)

    Article  Google Scholar 

  9. Haghparast, M., Bolhassani, A.: Optimized parity preserving quantum reversible full adder/subtractor. Int. J. Quantum Inform. (2016). https://doi.org/10.1142/S0219749916500192

    Article  MATH  Google Scholar 

  10. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theoritical Phys. 21, 219–253 (1982)

    Article  MathSciNet  Google Scholar 

  11. Montaser, R., Younes, A., Abdel-Aty, M.: New design of reversible full adder/subtractor using R gate. Int. J. Theor. Phys. 58, 167–183 (2019)

    Article  Google Scholar 

  12. Rangaraju, H. G., Hegde, V., Raja, K. B., Muralidhara, K. N.: Design of efficient reversible binary comparator. International Conference on Communication Technology and System Design, pp. 7–9 (2011)

  13. Kalita, G., Saikia, N.: Reversible comparator circuit using a new reversible gate. ICCCT ’15, September 25–27. Allahabad, India (2015)

    Google Scholar 

  14. Vudadha, C., Phaneendra, P. S., Sreehari, V., Ahmed, S. E., Muthukrishnan, N. M., Srinivas, M. B.: Design of Prefix-Based optimal reversible comparator. In: proc. 2012 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 201–206 (2012)

  15. Thapliyal, H., Ranganathan, N., Ferreira, R.: Design of a comparator tree based on reversible logic. In: proc. IEEE International Conference on Nanotechnology Joint Symposium, pp. 1113–1116 (2010)

  16. Maity, H., Biswas, A., Bhattacharjee, A.K., Pal, A.: The quantum cost optimized design of 2:4 decoder using new reversible gate. Micro. Nanosyst. 12, 146–148 (2020)

    Article  Google Scholar 

  17. Noorallahzadeh, M., Mosleh, M.: Optimized parity preserving quantum reversible full adder/subtractor. Int. J. Quantum Inform. (2020). https://doi.org/10.1142/S0219749920500203

    Article  MATH  Google Scholar 

  18. Maity, H., Biswas, A., Pal, A., Kr Bhattacharjee, A.: Design of BCD to excess-3 code converter circuit with optimized quantum cost, garbage output and constant input using reversible gate. Int. J. Quantum Inform. 16, 1850061 (2018)

    Article  Google Scholar 

  19. Maity, H., Barik, A.K., Biswas, A., Bhattacharjee, A.K., Pal, A.: Design of quantum cost, garbage output and delay optimized BCD to excess-3 and 2’s complement code converter. J. Circuits, Syst. Comput. 27, 1850184 (2018)

    Article  Google Scholar 

  20. Misra, N.K., Sen, B., Wairya, S.: Towards designing efficient reversible binary code converters and a dual-rail checker for emerging nanocircuits. J. Comput. Electron. (2017). https://doi.org/10.1007/s10825-017-0960-4

    Article  Google Scholar 

  21. Sarkar, A., Amin, M. S., Bose A., Islam, N.: Design of a comparator tree based on reversible logic. In: proc. IEEE International Conference on Nanotechnology Joint Symposium, pp. 1113–1116 (2010)

  22. Hung, W.N., Song, X., Yang, G., Yang, J., Perkowski, M.: Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput.-Aided Design 25(9), 1652–1663 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heranmoy Maity.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, H. Design and implementation of a two-qubit quantum comparator circuit (Q-CC). J Comput Electron 21, 530–534 (2022). https://doi.org/10.1007/s10825-022-01858-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01858-0

Keywords

Navigation