Skip to main content
Log in

Crosstalk noise analysis of coupled on-chip interconnects using a multiresolution time domain (MRTD) technique

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, crosstalk noise analysis of coupled on-chip interconnects is presented. The multiresolution time domain (MRTD) method is used to analyze the crosstalk noise model. The crosstalk-induced propagation time delay and crosstalk peak voltage on the victim line of interconnects are determined. The results obtained for the proposed MRTD model are compared with the conventional finite difference time domain (FDTD) method and validated with HSPICE simulations at the 22-nm technology node. The results show that crosstalk induced a propagation delay which is dynamic in-phase and dynamic out-of-phase, and peak voltage timing and the peak voltage value of functional crosstalk in the copper interconnects have an average error of less than 0.53% when compared with HSPICE simulations. The results for the proposed model are very similar to those of HSPICE simulations. Electromagnetic interference and electromagnetic compatibility of on-chip interconnects can also be addressed using the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Moaiyeri, M.H., Hajmohammadi, Z., Khezeli, M.R., Jalali, A.: Effective reduction in crosstalk effects in quaternary integrated circuits using mixed carbon nanotube bundle interconnects. ECS J. Solid State Sci. Technol. 7(5), M69 (2018). https://doi.org/10.1149/2.0111805jss

    Article  Google Scholar 

  2. Khezeli, M.R., Moaiyeri, M.H., Jalali, A.: Active shielding of MWCNT bundle interconnects: an efficient approach to cancellation of crosstalk-induced functional failures in ternary logic. IEEE Trans. Electromag. Compat. 61(1), 100–110 (2018). https://doi.org/10.1109/temc.2017.2788500

    Article  Google Scholar 

  3. Rabaey, J.M., Chandrakasan, A.P., Nikolić, B.: Digital integrated circuits: a design perspective, vol. 7. Pearson education, Upper Saddle River, NJ (2003)

    Google Scholar 

  4. Alpert, C.J., Devgan, A., Kashyap, C.V.: RC delay metrics for performance optimization. IEEE Trans. Comput. Aid. Des. Integr. Circuits. Syst. 20(5), 571–582 (2001). https://doi.org/10.1109/43.920682

    Article  Google Scholar 

  5. Rubinstein, Jorge, Penfield, Paul, Horowitz, Mark A.: Signal delay in RC tree networks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2(3), 202–211 (1983). https://doi.org/10.1145/62882.62932

    Article  Google Scholar 

  6. Masoumi, M., Masoumi, N., Javanpak, A.: A new and efficient approach for estimating the accurate time-domain response of single and capacitive coupled distributed RC interconnects. Microelectron. J. 40(8), 1212–1224 (2009). https://doi.org/10.1016/j.mejo.2009.04.004

    Article  Google Scholar 

  7. Ismail, Yehea I., Friedman, Eby G., Neves, Jose L.: Equivalent Elmore delay for RLC trees. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 19(1), 83–97 (2000). https://doi.org/10.1109/43.822622

    Article  Google Scholar 

  8. Ismail, Y.I., Friedman, E.G.: Effects of inductance on the propagation delay and repeater insertion in VLSI circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 8(2), 195–206 (2000)

    Article  Google Scholar 

  9. Agarwal, K.: Sylvester, Dennis, Blaauw, David: Modeling and analysis of crosstalk noise in coupled RLC interconnects. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(5), 892–901 (2006). https://doi.org/10.1109/TCAD.2005.855961

    Article  Google Scholar 

  10. Cui, J.P., Zhao, W.S., Yin, W.Y., Jun, H.: Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans. Electromag. Compat. 54(1), 126–132 (2011). https://doi.org/10.1109/TEMC.2011.2172947

    Article  Google Scholar 

  11. Li, X.C., Mao, J.F., Swaminathan, M.: Transient Analysis of CMOS-Gate-Driven \(RLGC\) Interconnects Based on FDTD. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(4), 574–583 (2011). https://doi.org/10.1109/TCAD.2010.2095650

    Article  Google Scholar 

  12. Liang, F., Wang, G., Lin, H.: Modeling of crosstalk effects in multiwall carbon nanotube interconnects. IEEE Trans. Electromag. Compat. 54(1), 133–139 (2011). https://doi.org/10.1109/temc.2011.2172982

    Article  Google Scholar 

  13. Kumar, V.R., Kaushik, B.K., Patnaik, A.: Crosstalk noise modeling of multiwall carbon nanotube (MWCNT) interconnects using finite-difference time-domain (FDTD) technique. Microelectr. Reliab. 55(1), 155–163 (2015). https://doi.org/10.1016/j.microrel.2014.09.001

    Article  Google Scholar 

  14. Tentzeris, E.M., Robertson, R.L., Harvey, J.F., Katehi, L.P.B.: Stability and dispersion analysis of Battle-Lemarie-based MRTD schemes. IEEE Trans. Microwave Theory Tech. 47(7), 1004–1013 (1999). https://doi.org/10.1109/22.775432

    Article  Google Scholar 

  15. Alighanbari, A., Sarris, C.D.: Dispersion properties and applications of the Coifman scaling function based S-MRTD. IEEE Trans. Antennas Propag. 54(8), 2316–2325 (2006). https://doi.org/10.1109/tap.2006.879194

    Article  MathSciNet  MATH  Google Scholar 

  16. Krumpholz, M., Katehi, L.P.B.: MRTD: new time-domain schemes based on multiresolution analysis. IEEE Trans. Microwave Theory Tech. 44(4), 555–571 (1996). https://doi.org/10.1109/22.491023

    Article  Google Scholar 

  17. Grivet-Talocia, S.: On the accuracy of Haar-based multiresolution time-domain schemes. IEEE Microwave Guided Wave Lett. 10(10), 397–399 (2000). https://doi.org/10.1109/75.877224

    Article  MathSciNet  Google Scholar 

  18. Fujii, M., Hoefer, W.J.R.: Dispersion of time domain wavelet Galerkin method based on Daubechies’ compactly supported scaling functions with three and four vanishing moments. IEEE Microwave Guided Wave Lett. 10(4), 125–127 (2000). https://doi.org/10.1109/75.846920

  19. Massy, I., Ney, M.M.: A hybrid MRTD-FDTD technique for efficient field computation. In: Ahmed, I., Chen, Z.D. (eds.) Computational electromagnetics-retrospective and outlook, pp. 245–278. Springer, Singapore (2015)

    Google Scholar 

  20. Tong, Z., Sun, L., Li, Y., Luo, J.: Multiresolution time-domain scheme for terminal response of two-conductor transmission lines. Math. Probl. Eng. (2016). https://doi.org/10.1155/2016/8045749

    Article  Google Scholar 

  21. Tong, Z., Sun, L., Li, Y., Angulo, L.D., Gonzalez, G., Salvador, L.J.: Multiresolution time-domain analysis of multiconductor transmission lines terminated in linear loads. Math. Probl. Eng. (2017). https://doi.org/10.1155/2017/9845702

    Article  Google Scholar 

  22. Rebelli, S., Rao, N.B.: A novel MRTD model for signal integrity analysis of resistive driven coupled copper interconnects. COMPEL-Int. J. Comput. Math. Electr. Electr. Eng. (2018). https://doi.org/10.1108/COMPEL-12-2016-0521

    Article  Google Scholar 

  23. Rebelli, S., Nistala, B.R.: An efficient MRTD model for the analysis of crosstalk in CMOS-driven coupled Cu interconnects. Radioengineering 27(2), 532–540 (2018). https://doi.org/10.13164/re.2018.0532

    Article  Google Scholar 

  24. Rebelli, S., Nistala, B.R.: A multiresolution time domain (MRTD) method for crosstalk noise modeling of CMOS-gate-driven coupled MWCNT interconnects. IEEE Transactions on Electromagnetic Compatibility 62(2), 521–531 (2019). https://doi.org/10.1109/temc.2019.2903728

    Article  Google Scholar 

  25. Paul, C.R.: Incorporation of terminal constraints in the FDTD analysis of transmission lines. IEEE Trans. Electromag. Compat. 36(2), 85–91 (1994). https://doi.org/10.1109/15.293284

    Article  Google Scholar 

  26. Pan, G.W.: Wavelets in electromagnetics and device modeling, vol. 159. Wiley, London (2003)

    Book  Google Scholar 

  27. Dogaru, T., Carin, L.: Multiresolution time-domain algorithm using CDF biorthogonal wavelets. IEEE Trans. Microwave Theory Tech. 49(5), 902–912 (2001). https://doi.org/10.1109/22.920147

    Article  Google Scholar 

  28. Kumar, M.G., Chandel, R., Agrawal, Y.: An efficient crosstalk model for coupled multiwalled carbon nanotube interconnects. IEEE Trans. Electromag. Compat. 60(2), 487–496 (2017). https://doi.org/10.1109/TEMC.2017.2719052

    Article  Google Scholar 

  29. International Technology Roadmap for Semiconductors (ITRS) 2013.[Online]. Available:http://www.itrs.net/

  30. Badugu, D., Madhuri, S.S.: Crosstalk noise analysis of on-chip interconnects for ternary logic applications using FDTD. Microelectr. J. 93, 104633 (2019). https://doi.org/10.1016/j.mejo.2019.104633

    Article  Google Scholar 

  31. Synopsys for HSPICE tools, (2008). [Online]. Available:http://www.synopsys.com

Download references

Acknowledgements

This research was sponsored by the University Grants Commission (UGC) fellowship. The authors would like to thank the Principal, UCE(A) Osmania University for all their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar Gugulothu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gugulothu, B., Bhukya, R.N. Crosstalk noise analysis of coupled on-chip interconnects using a multiresolution time domain (MRTD) technique. J Comput Electron 21, 348–359 (2022). https://doi.org/10.1007/s10825-021-01828-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01828-y

Keywords

Navigation