Skip to main content

Advertisement

Log in

Application of nitrogenated holey graphene for detection of volatile organic biomarkers in exhaled breath of humans with chronic kidney disease: a density functional theory study

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The possibility of using nitrogenated holey graphene (NHG) sheet to detect volatile organic biomarkers in exhaled breath of humans with kidney disease is investigated. Heptanal, hexanal, pentanal, and isoperene are known as the prominent biomarkers of chronic kidney disease. Adsorption of these molecules on NHG sheet is studied using density functional theory. All the molecules are weakly physisorbed on NHG sheet, which predicts easy desorption and the possibility of using NHG sheet as a reusable sensor. The NHG sheet acts as a semiconductor with a direct band gap. Adsorption of the considered molecules causes n-type semiconducting properties in the sheet. Increasing the concentration of the adsorbed molecules decreased the energy band gaps and consequently increased the electric conductivity of NHG sheet. Hence, the electronic properties of NHG sheet are sensitive to the presence and concentration of heptanal, hexanal, pentanal, and isoperene molecules. Our results open a new opportunity to design a new sensor to diagnose chronic kidney disease using exhaled breath analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Levey, A.S., Atkins, R., Coresh, J., Cohen, E.P., Collins, A.J., Eckardt, K.-U., Nahas, M.E., Jaber, B.L., Jadoul, M., Levin, A., Powe, N.R., Rossert, J., Wheeler, D.C., Lameire, N., Eknoyan, G.: Chronic kidney disease as a global public health problem: approaches and initiatives - a position statement from kidney disease improving global outcomes. Kidney Int. 72, 247–259 (2007)

    Article  Google Scholar 

  2. B. Grabowska-Polanowska, J. Faber, M. Skowron, P. Miark, A. Pietrzyck, I.S. liwka, A. Amannd, Detection of potential chronic kidney disease markers in breath using gas chromatography with mass-spectral detection coupled with thermal desorption method, J. Chromatogr, A 1301 (2013) 179–189

  3. Amann, A., Spanel, P., Smith, D.: Breath analysis: the approach towards clinical applications. Mini Rev. Med. Chem. 7, 115–129 (2007)

    Article  Google Scholar 

  4. Hakim, M., Broza, Y.Y., Barash, O., Peled, N., Phillips, M., Amann, A., Haick, H.: Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 112, 5949–5966 (2012)

    Article  Google Scholar 

  5. Majidi, R., Nadafan, M.: Detection of exhaled gas by γ-graphyne and twin-graphene for early diagnosis of lung cancer: a density functional theory study. J. Phys. Lett. A 384, 126036 (2020)

    Article  Google Scholar 

  6. Mazzone, P.J., Hammel, J., Dweik, R., et al.: Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax 62, 565–568 (2007)

    Article  Google Scholar 

  7. Buszewski, B., Kesy, M., Ligor, T., Amann, A.: Human exhaled air analytics: biomarkers of diseases. Biomed. Chromatogr. 21, 553–566 (2007)

    Article  Google Scholar 

  8. Ligor, T., Ligor, M., Amann, A., Ager, C., Bachler, M., Dzien, A., Buszewski, B.: The analysis of healthy volunteers’ exhaled breath by the use of solid-phase microextraction and GC-MS. J. Breath Res. 2, 046006 (2008)

    Article  Google Scholar 

  9. Capuano, R., Catini, A., Paolesse, R., Di Natale, C.: Sensors for lung cancer diagnosis. J. Clin. Med. 8, 235 (2019)

    Article  Google Scholar 

  10. B. Behera, R. Joshi, G.K. Anil Vishnu, S. Bhalerao, H.J. Pandya, Electronic nose: a non-invasive technology for breath analysis of diabetes and lung cancer patients, J. Breath Res. 2 024001 (2019)

  11. Sruthy, P.C., Nagarajan, V., Chandiramouli, R.: Interaction studies of kidney biomarker volatiles on black phosphorene nanoring: a first-principles investigation. J. Mol. Graph. Model. 97, 107566 (2020)

    Article  Google Scholar 

  12. Meinardi, S., Jin, K.-B., Barletta, B., Blake, D.R., Vaziri, N.D.: Exhaled breath and fecal volatile organic biomarkers of chronic kidney disease. BBA-Biomembranes 2013, 2531–2537 (1830)

    Google Scholar 

  13. Trovarelli, G., Brunori, F., De Medio, G.E., Timio, M., Lippi, G., Pelli, M.A., Capodicasa, E.: Onset, time course, and persistence of increased haemodialysis-induced breath isoprene emission. Nephron 88, 44–47 (2000)

    Article  Google Scholar 

  14. Hibino, H., Kageshima, H., Kotsugi, M., Maeda, F., Guo, F.-Z., Watanabe, Y.: Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy. Phys. Rev. B. 79, 125437 (2009)

    Article  Google Scholar 

  15. Songa, H., Gaob, J., Wuc, L.: Fluorouracil drug sensing characteristics of pristine and Al-doped BC3 nanosheets: Quantum chemical study. Comput. Theor. Chem. 1182, 112847 (2020)

    Article  Google Scholar 

  16. Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., Danquah, M.K.: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018)

    Article  Google Scholar 

  17. Mortazavi, B., Podryabinkin, E.V., Roche, S., Rabczuk, T., Zhuang, X., Shapeev, A.V.: Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures. Mater. Horiz. 7, 2359 (2020)

    Article  Google Scholar 

  18. Maiti, D., Tong, X., Mou, X., Yang, K.: Carbon-based nanomaterials for biomedical applications: A Recent Study. Front Pharmacol. 9, 1401 (2018)

    Article  Google Scholar 

  19. Notarianni, M., Liu, J., Vernon, K., Motta, N.: Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein J. Nanotechnol 7, 149–196 (2016)

    Article  Google Scholar 

  20. A. Esmailpour, R. Majid, H.R. Taghiyari, M. Ganjkhani, S.M. Mohseni Armaki, A.N. Papadopoulos, Improving fire retardancy of beechwood by graphene, Polymers 12 303 (2020)

  21. Bezzon, V.D.N., Montanheiro, T.L.A., Menezes de, B.R.C., Ribas, R.G., Righetti, V.A.N., Rodrigues, K.F., Thim, G.P.: Carbon nanostructure based sensors: a brief review on recent advances. Adv. Mater. Sci. Eng 2019, 1–21 (2019)

    Article  Google Scholar 

  22. You, Y., Deng, J., Tan, X., Gorjizadeh, N., Yoshimura, M., Smith, S.C., Sahajwalla, V., Joshi, R.K.: On the mechanism of gas adsorption for pristine, defective and functionalized graphene. Phys. Chem. Chem. Phys. 19, 6051–6056 (2017)

    Article  Google Scholar 

  23. Majidi, R., Karami, A.R.: Caffeine and nicotine adsorption on perfect, defective and porous graphene sheets. Diam. Relat. Mater. 66, 47–51 (2016)

    Article  Google Scholar 

  24. Deb, J., Paul, D., Pegu, D., Sarkar, U.: Adsorption of hydrazoic acid on pristine graphyne sheet: a computational study. Wuli Huaxue Xuebao, Acta Physico - Chimica Sinica 34, 537–542 (2018)

    Article  Google Scholar 

  25. Nagarajan, V., Dharani, S., Chandiramouli, R.: Density functional studies on the binding of methanol and ethanol molecules to graphyne nanosheet. Comp. Theor. Chem. 1125, 86–94 (2018)

    Article  Google Scholar 

  26. Karami, A.R., Majidi, R.: Detection of toxic gases with graphyne nanotubes: a density functional theory study. Chem. Lett. 44, 1071–1073 (2015)

    Article  Google Scholar 

  27. Majidi, R., Sarkar, U.: Detection of NOx and COx (x = 1, 2) molecules with T4,4,4-graphyne: a density functional theory study. Mol. Phys. 46, 1383–1389 (2020)

    Google Scholar 

  28. Wan, Q., Xu, Y., Xiao, H.: Exhaled gas detection by Ir-doped CNT for primary diagnosis of lung cancer. AIP Adv 8, 105128 (2018)

    Article  Google Scholar 

  29. Wan, Q., Xu, Y., Zhang, X.: Adsorption Properties of Typical Lung Cancer Breath Gases on Ni-SWCNTs through Density Functional Theory. J. Sensors 2017, 1–8 (2017)

    Article  Google Scholar 

  30. Majidi, R., Ramazani, R.: Detection of HF and H2S with pristine and Ti-embedded twin graphene: a density functional theory study. J. Phys. Chem. Solids 132, 31 (2019)

    Article  Google Scholar 

  31. Prasongkit, J., Amorim, R.G., Chakraborty, S., Ahuja, R., Scheicher, R.H., Amornkitbamrung, V.: Highly sensitive and selective gas detection based on silicene. Phys. Chem. C 119, 16934–16940 (2015)

    Article  Google Scholar 

  32. Abbasi, A.: Adsorption of ozone molecules on AlP-codoped stanene nanosheet: a density functional theory study. J. Nanoanalysis. 6, 60–71 (2019)

    Google Scholar 

  33. Song, H., Gaob, J., Wu, L.: Fluorouracil drug sensing characteristics of pristine and Al-doped BC3 nanosheets: Quantum chemical study. Comput. Theor. Chem. 1182, 112847 (2020)

    Article  Google Scholar 

  34. Srivastava, P., Abhishek, N.K.: Jaiswal, First-principles investigation of CO2 and NH3 adsorption on antimonene nanoribbons. Mater. Today: Proceedings 28, 65–69 (2020)

    Google Scholar 

  35. J. Mahmood, E. Kwang Lee, M. Jung, et al., Nitrogenated holey two-dimensional structures, Nat. Commun 6 6486 (2015)

  36. Tromer, R.M., da Luz, M.G.E., Ferreira, M.S., Felipe, L., Pereira, C.: Atomic adsorption on nitrogenated holey graphene. J. Phys. Chem. C 121, 3055–3061 (2017)

    Article  Google Scholar 

  37. M. Yagmurcukardes, S. Horzum, E. Torun, F.M. Peeters, R. Tugrul Senge, Nitrogenated, phosphorated and arsenicated monolayer holey graphenes, Phys. Chem. Chem. Phys 18 (4) 3144–3150 (2016)

  38. Nulakani, N.V.R., Subramanian, V.: A theoretical study on the design, structure, and electronic properties of novel forms of graphynes. J. Phys. Chem. C 120, 15153–15161 (2016)

    Article  Google Scholar 

  39. R. majidi, M. Odelius, S H. AlTaha, Structural and electronic properties of nitrogenated holey nanotubes A density functional theory study, Diam. Relat. Mater 82 96–101 (2018)

  40. T. Ozaki, H. Kino, J. Yu, M.J. Han, N. Kobayashi, M. Ohfuti, F. Ishii, F., et al., User's Manual of OpenMX Version 3.8, http://www.openmx-square.org.

  41. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  42. Morrison, I., Bylander, D.M., Kleinman, L.: Nonlocal hermitian norm-conserving vanderbilt pseudopotential. Phys. Rev. B 47, 6728 (1993)

    Article  Google Scholar 

  43. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990)

    Article  Google Scholar 

  44. Grimme, S.J.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Comput. Chem. 27, 1787–1799 (2006)

    Article  Google Scholar 

  45. Mulliken, R.S.: Electronic population analysis on LCAO-MO molecular wave functions. IV. Bonding and antibonding in LCAO and valence-Bond theories. J. Chem. Phys. 23, 2343–2346 (1955)

    Article  Google Scholar 

  46. Henkelman, G., Jonsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000)

    Article  Google Scholar 

  47. Huang, H., Wu, H.-H., Chi, C., Zhu, J., Huang, B., Zhang, T.-Y.: Out-of-plane ion transport makes nitrogenated holey graphite a promising high-rate anode for both Li and Na ion batteries. Nanoscale 11, 18758–18768 (2019)

    Article  Google Scholar 

  48. Xu, C.Y., Dong, H.K., Shi, L.B.: First principles investigation of nitrogenated holey graphene. Phys. E. 98, 135–139 (2018)

    Article  Google Scholar 

  49. Sahin, H.: Structural and phononic characteristics of nitrogenated holey graphene phys. Rev. B 92, 085421 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Shahid Rajaee Teacher Training University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Majidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidi, R., Nadafan, M. Application of nitrogenated holey graphene for detection of volatile organic biomarkers in exhaled breath of humans with chronic kidney disease: a density functional theory study. J Comput Electron 20, 1930–1937 (2021). https://doi.org/10.1007/s10825-021-01737-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01737-0

Keywords

Navigation