Skip to main content
Log in

The effect of different surface plasmon polariton shapes on thin-film solar cell efficiency

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The effects of surface plasmon polaritons (SPPs) on the efficiency, series resistance, and shunt resistance of thin-film Si solar cells are studied and analyzed in this work. Different SPP shapes and their effects on the optical and electrical properties and thereby the efficiency of thin-film solar cells are studied. Semiconductor and electromagnetic models are incorporated to study the electrical and optical behaviors of the thin-film solar cells, respectively, using COMSOL Multiphysics three-dimensional (3D) numerical simulation software. An efficiency of 14.76% is achieved for triangular SPPs, representing a 1.07% improvement compared with SPP-free solar cells. The solar cell electrical parameters are also extracted based on a single-diode equivalent model. The series resistance is decreased by 3% for solar cells having equilateral-triangle SPPs compared with SPP-free solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data related to this article are available from the corresponding author upon reasonable request.

References

  1. Wenham, S.R., Green, M.A., Watt, M.E., Corkish, R., Sproul, A.: Applied Photovoltaics. Routledge, London (2007)

    Google Scholar 

  2. Fahrenbruch, A.L., Bube, R.H.: Fundamentals of Solar Cells. Academic, New York (1983)

    Google Scholar 

  3. Shah, A.: Thin-Film Silicon Solar Cells. EPFL Press, Lausanne (2010)

    Book  Google Scholar 

  4. Maier, S.A., Brongersma, M.L., Kik, P.G., Meltzer, S., Requicha, A.A.G., Atwater, H.A.: Plasmonics—a route to nanoscale optical devices. Adv. Mater. 13(19), 1501–1505 (2001). https://doi.org/10.1002/1521-4095(200110)13:19%3c1501::AID-ADMA1501%3e3.0.CO;2-Z

    Article  Google Scholar 

  5. ElKhamisy, K.M., El-Rabaie, S., Elagooz, S.S., Elhamid, H.A.: The effect of different surface grating shapes on thin film solar cell efficiency. In: 2019 International Conference on Innovative Trends in Computer Engineering (ITCE). IEEE (2019). https://doi.org/10.1109/ITCE.2019.8646471

  6. Yousif, B., Abo-Elsoud, M.E.A., Marouf, H.: Triangle grating for enhancement the efficiency in thin film photovoltaic solar cells. Optical Quantum Electron. 51(1–11), 276 (2019)

    Article  Google Scholar 

  7. Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010). https://doi.org/10.1038/nmat2629

    Article  Google Scholar 

  8. Schuller, J.A., Barnard, E.S., Cai, W.S., Jun, Y.C., White, J.S., Brongersma, M.L.: Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9(3), 193–204 (2010). https://doi.org/10.1038/nmat2630

    Article  Google Scholar 

  9. Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83–91 (2010). https://doi.org/10.1038/nphoton.2009.282

    Article  Google Scholar 

  10. Iqbal, T., Ijaz, M., Javaid, M., et al.: An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell. Plasmonics 14, 147–154 (2019). https://doi.org/10.1007/s11468-018-0787-2

    Article  Google Scholar 

  11. Tabrizi, A.A., Pahlavan, A.: Efficiency improvement of a silicon-based thin-film solar cell using plasmonic silver nanoparticles and an antireflective layer. Opt. Commun. 454, 124437 (2020). https://doi.org/10.1016/j.optcom.2019.124437

    Article  Google Scholar 

  12. Yousif, B., Abo-Elsoud, M.E.A., Marouf, H.: High-performance enhancement of a GaAs photodetector using a plasmonic grating. Plasmonics 15, 1377–1387 (2020). https://doi.org/10.1007/s11468-020-01142-6

    Article  Google Scholar 

  13. Pahuja, A., Parihar, M.S., Dinesh Kumar, V.: Performance enhancement of thin film solar cell using two-dimensional plasmonic grating in rear electrode. IEEE Trans. Nanotechnol. 18, 626–634 (2019). https://doi.org/10.1109/TNANO.2019.2924053

    Article  Google Scholar 

  14. Ghahremani, A., Fathy, A.E.: A three-dimensional multiphysics modeling of thin-film amorphous silicon solar cells. Energy Sci. Eng. 3(6), 520–534 (2015). https://doi.org/10.1002/ese3.100

    Article  Google Scholar 

  15. Lockyear, M.J., Hibbins, A.P., Sambles, J.R.: Microwave surface-plasmon-like modes on thin metamaterials. Phys. Rev. Lett 102(7), 073901 (2009). https://doi.org/10.1103/PhysRevLett.102.073901

    Article  Google Scholar 

  16. Zeng, S., Yu, X., Law, W.-C., Zhang, Y., Hu, R., Dinh, X.-Q., Ho, H.-P., Yong, K.-T.: Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sens. Actuators B Chem. 176, 1128–1133 (2013). https://doi.org/10.1016/j.snb.2012.09.073

    Article  Google Scholar 

  17. Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, vol. 111. Springer, New York (1988)

    Book  Google Scholar 

  18. Cottam, M.G.: Introduction to Surface and Superlattice Excitations. Cambridge University Press, New York (1989)

    Book  Google Scholar 

  19. Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, New Jersey (1996)

    MATH  Google Scholar 

  20. Dostalek, J., Ctyroky, J., Homola, J., Brynda, E., Skalsky, M., Nekvindova, P., Spirkova, J., Skvor, J., Schrofel, J.: Surface plasmon resonance biosensor based on integrated optical waveguide. Sens. Actuators B Chem. 76, 8–12 (2001). https://doi.org/10.1016/S0925-4005(01)00559-7

    Article  Google Scholar 

  21. Homola, J.: Surface Plasmon Resonance Based Sensors. Springer Series on Chemical Sensors and Biosensors. Springer, Berlin (2006)

    Google Scholar 

  22. Abdelhamid, H., Edris, A., Helmy, A., et al.: Fast and accurate PV model for SPICE simulation. J. Comput. Electron. 18, 260–270 (2019). https://doi.org/10.1007/s10825-018-1266-x

    Article  Google Scholar 

  23. Quinn, J.J.: Solid State Physics: Principles and Modern Applications. Springer, Berlin, Heidelberg (2009)

    Book  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Khalil ElKhamisy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Consent to participate

All the authors agreed to be involved in this research work.

Consent for publication

All the authors have given permission to publish the results.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ElKhamisy, K., Abdelhamid, H., Elagooz, S. et al. The effect of different surface plasmon polariton shapes on thin-film solar cell efficiency. J Comput Electron 20, 1807–1814 (2021). https://doi.org/10.1007/s10825-021-01729-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01729-0

Keywords

Navigation