Skip to main content

Advertisement

Log in

Graphene disks for frequency control of terahertz waves in broadband applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The terahertz (THz) gap lying between the microwave and optical parts of the electromagnetic spectrum has attracted immense attention due to its applications between radiofrequency (RF)/microwave and photonic systems. A structure consisting of a graphene sheet sandwiched between two graphene disks is introduced herein to control the reflection, absorption, and transmission of THz waves. The proposed metamaterial structures are designed analytically using transmission line theory. Also, the dimensions of the structure and the electrical gating of the graphene are optimized utilizing a genetic algorithm. The structure is simulated using two different methods: (1) a circuit model based on transmission line theory and (2) commercial full-wave software based on the finite element method, which are verified by the agreement between their results. Finally, the proposed method is used to design a THz filter and THz wave absorber, which are in great demand for application in modulators, sensors, detectors, and imaging systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Sethi, K.K., Palai, G., Sarkar, P.: Realization of accurate blood glucose sensor using photonics based metamaterial. Optik 168, 296–301 (2018)

    Article  Google Scholar 

  2. Biabanifard, M., Sadegh Biabanifard, S., Hosseini, J., Jahanshiri, A.: Design and comparison of terahertz graphene antenna: ordinary dipole, fractal dipole, spiral, bow-tie and log-periodic. Eng. Technol. 2, 555585-001 (2018)

    Google Scholar 

  3. Aghaee, T., Orouji, A.A.: Reconfigurable multi-band, graphene-based THz absorber: circuit model approach. Results Phys. 16, 102855 (2020)

    Article  Google Scholar 

  4. Monticone, F., Alu, A.: Metamaterial, plasmonic and nanophotonic devices. Rep. Prog. Phys. 80(3), 036401 (2017)

    Article  Google Scholar 

  5. Escorcia, I., Grant, J., Gough, J., Cumming, D.R.: Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode. Opt. Lett. 41(14), 3261–3264 (2016)

    Article  Google Scholar 

  6. Abbasi, M., Biabanifard, M., Abrishamian, M.S.: Design of symmetrical wide-angle graphene-based mid-infrared broadband perfect absorber based on circuit model. Photon. Nanostruct. Fundam. Appl. 36, 100729 (2019)

    Article  Google Scholar 

  7. Tabatabaei, F., Biabanifard, M., Abrishamian, M.S.: Terahertz polarization-insensitive and all-optical tunable filter using Kerr effect in graphene disks arrays. Optik 180, 526–535 (2019)

    Article  Google Scholar 

  8. Khavasi, A.: Design of ultra-broadband graphene absorber using circuit theory. JOSA B 32(9), 1941–1946 (2015)

    Article  Google Scholar 

  9. Biabanifard, M., Abrishamian, M.S.: Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons. AEU-Int. J. Electron. Commun. 95, 256–263 (2018)

    Article  Google Scholar 

  10. Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photon. 4(9), 611 (2010)

    Article  Google Scholar 

  11. Xia, F., Mueller, T., Lin, Y.-m., Valdes-Garcia, A., Avouris, P.: Ultrafast graphene photodetector. Nat. Nanotechnol. 4(12), 839 (2009)

    Article  Google Scholar 

  12. Do, V.-N.: Non-equilibrium Green function method: theory and application in simulation of nanometer electronic devices. Adv. Nat. Sci. Nanosci. Nanotechnol. 5(3), 033001 (2014)

    Article  Google Scholar 

  13. Chen, M., Li, W., Kumar, A., Li, G., Itkis, M.E., Wong, B.M., Bekyarova, E.: Covalent atomic bridges enable unidirectional enhancement of electronic transport in aligned carbon nanotubes. ACS Appl. Mater. Interfaces. 11(21), 19315–19323 (2019)

    Article  Google Scholar 

  14. Sulas, D.B., London, A.E., Huang, L., Lihua, X., Zhenghui, W., Ng, T.N., Wong, B.M., Schlenker, C.W., Azoulay, J.D., Sfeir, M.Y.: Preferential charge generation at aggregate sites in narrow band gap infrared photoresponsive polymer semiconductors. Adv. Opt. Mater. 6(7), 1701138 (2018)

    Article  Google Scholar 

  15. Vakil, A., Engheta, N.: Transformation optics using graphene. Science 332(6035), 1291–1294 (2011)

    Article  Google Scholar 

  16. Biabanifard, M., Abrishamian, M.S.: Circuit modeling of tunable terahertz graphene absorber. Optik 158, 842–849 (2018)

    Article  Google Scholar 

  17. Biabanifard, M., Abrishamian, M.S.: Ultra-wideband terahertz graphene absorber using circuit model. Appl. Phys. A 124(12), 826 (2018)

    Article  Google Scholar 

  18. Phare, C.T., Lee, Y.-H.D., Cardenas, J., Lipson, M.: Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photon. 9(8), 511–514 (2015)

    Article  Google Scholar 

  19. Jozani, K.J., Abbasi, M., Asiyabi, T., Biabanifard, M., Biabanifard, S.: Multi-bias, graphene-based reconfigurable THz absorber/reflector. Optik 198, 163248 (2019)

    Article  Google Scholar 

  20. Mencarelli, D., Bellucci, S., Sindona, A., Pierantoni, L.: Spatial dispersion effects upon local excitation of extrinsic plasmons in a graphene micro-disk. J. Phys. D Appl. Phys. 48(46), 465104 (2015)

    Google Scholar 

  21. Islam, M.S., Sultana, J., Biabanifard, M., Vafapour, Z., Nine, M.J., Dinovitser, A., Cordeiro, C.M.B., Ng, B.W.-H., Abbott, D.: Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon 158, 559–567 (2020)

    Google Scholar 

  22. Biabanifard, M., Asgari, S., Biabanifard, S., Abrishamian, M.S.: Analytical design of tunable multi-band terahertz absorber composed of graphene disks. Optik 182, 433–442 (2019)

    Google Scholar 

  23. Yang, J., Zhu, Z., Zhang, J., Guo, C., Wei, X., Liu, K., Yuan, X., Qin, S.: Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure. Sci. Rep. 8(1), 1–8 (2018)

    Google Scholar 

  24. Amin, M., Farhat, M., Bağcı, H.: An ultra-broadband multilayered graphene absorber. Opt. Express 21(24), 29938–29948 (2013)

    Google Scholar 

  25. Xiao, B., Lin, H., Xiao, L., Mingyue, G., Yang, D., Limin, H., Guo, F., Mi, H.: A tunable dual-band THz absorber based on graphene sheet and ribbons. Opt. Quant. Electron. 50(10), 370 (2018)

    Google Scholar 

  26. Chen, M., Sun, W., Cai, J., Chang, L., Xiao, X.: Frequency-tunable terahertz absorbers based on graphene metasurface. Opt. Commun. 382, 144–150 (2017)

    Google Scholar 

  27. Wang, Z., Zhou, M., Lin, X., Liu, H., Wang, H., Faxin, Yu., Lin, S., Li, E., Chen, H.: A circuit method to integrate metamaterial and graphene in absorber design. Opt. Commun. 329, 76–80 (2014)

    Google Scholar 

  28. Taghvaee, H.R., Nasari, H., Abrishamian, M.S.: Circuit modeling of graphene absorber in terahertz band. Opt. Commun. 383, 11–16 (2017)

    Article  Google Scholar 

  29. Khavasi, A., Rejaei, B.: Analytical modeling of graphene ribbons as optical circuit elements. IEEE J. Quantum Electron. 50(6), 397–403 (2014)

    Article  Google Scholar 

  30. Barzegar-Parizi, S., Rejaei, B., Khavasi, A.: Analytical circuit model for periodic arrays of graphene disks. IEEE J. Quantum Electron. 51(9), 1–7 (2015)

    Article  Google Scholar 

  31. Biabanifard, S., Biabanifard, M., Asgari, S., Asadi, S., Mustapha, C.E.: Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons. Opt. Commun. 427, 418–425 (2018)

    Article  Google Scholar 

  32. Arsanjani, A., Biabanifard, M., Abrishamian, M.S.: A novel analytical method for designing a multi-band, polarization-insensitive and wide angle graphene-based THz absorber. Superlattices Microstruct. 128, 157–169 (2019)

    Article  Google Scholar 

  33. Xiao, B., Mingyue, G., Xiao, S.: Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays. Appl. Opt. 56(19), 5458–5462 (2017)

    Article  Google Scholar 

  34. Cunningham, P.D., Valdes, N.N., Vallejo, F.A., Michael Hayden, L., Polishak, B., Zhou, X.-H., Luo, J., Jen, Alex K.-Y., Williams, J.C., Twieg, R.J.: Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials. J. Appl. Phys. 109(4), 043505 (2011)

    Article  Google Scholar 

  35. Francescato, Y., Giannini, V., Maier, S.A.: Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon. New J. Phys. 15(6), 063020 (2013)

    Article  Google Scholar 

  36. Hanson, G.W.: Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J. Appl. Phys. 104(8), 084314 (2008)

    Article  Google Scholar 

  37. Wang, J., Chen, Y., Chen, X., Hao, J., Yan, M., Qiu, M.: Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Opt. Express 19(15), 14726–14734 (2011)

    Article  Google Scholar 

  38. Andryieuski, A., Lavrinenko, A.V.: Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt. Express 21(7), 9144–9155 (2013)

    Article  Google Scholar 

  39. Arik, K., AbdollahRamezani, S., Khavasi, A.: Polarization insensitive and broadband terahertz absorber using graphene disks. Plasmonics 12(2), 393–398 (2017)

    Article  Google Scholar 

  40. Kang, J., Shin, D., Bae, S., Hong, B.H.: Graphene transfer: key for applications. Nanoscale 4(18), 5527–5537 (2012)

    Google Scholar 

Download references

Funding

This research did not receive any grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Borzooei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzooei, S., Rezagholizadeh, E. & Biabanifard, M. Graphene disks for frequency control of terahertz waves in broadband applications. J Comput Electron 19, 759–772 (2020). https://doi.org/10.1007/s10825-020-01471-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01471-z

Keywords

Navigation