Skip to main content
Log in

3-D Monte Carlo device simulator for variability modeling of p-MOSFETs

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A device simulator for p-MOSFETs, based on the Monte Carlo method for the solution of the Boltzmann transport equation, was developed, and results and implementation challenges are presented and discussed in detail in this paper. By using a Monte Carlo device simulator (MCDS), it is possible to consider effects that affect state-of-the-art devices that cannot be adequately considered using other methods (drift–diffusion, hydrodynamic, etc.). Novel feature of the simulator is that it treats hole–hole and hole–impurity interactions in real space using particle–particle–particle–mesh coupling method, allowing the simulator to account for random dopant fluctuation and charged traps, responsible for random telegraph noise and bias temperature instability, while having a small computational cost enabling statistical simulations. The MCDS shows excellent agreement between experimental data for the hole drift velocity versus electric field and low-field hole mobility versus doping density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grasser, T., Tang, T.-W., Kosina, H., Selberherr, S.: A review of hydrodynamic and energy-transport models for semiconductor device simulation. Proc. IEEE 91(2), 251–274 (2003)

    Google Scholar 

  2. Banoo, K., Lundstrom, M.: Electron transport in a model Si transistor. Solid State Electron. 44(9), 1689–1695 (2000)

    Google Scholar 

  3. Natori, K.: Ballistic MOSFET reproduces current–voltage characteristics of an experimental device. IEEE Electron Device Lett. 23(11), 655–657 (2002)

    Google Scholar 

  4. Laux, S., Fischetti, M.: Monte-Carlo simulation of submicrometer Si n-MOSFETs at 77 and 300 K. IEEE Electron Device Lett. 9(9), 467–469 (1988)

    Google Scholar 

  5. Mangla, A., Sallese, J.-M., Sampedro, C., Gamiz, F., Enz, C.: Role of the gate in ballistic nanowire SOI MOSFETs. Solid State Electron. 112, 24–28 (2015)

    Google Scholar 

  6. Alexander, C., Roy, G., Asenov, A.: Random-dopant-induced drain current variation in nano-MOSFETs: a three-dimensional self-consistent monte carlo simulation study using “ab initio” ionized impurity scattering. IEEE Trans. Electron Devices 55(11), 3251–3258 (2008)

    Google Scholar 

  7. Kovac, U., Alexander, C., Roy, G., Riddet, C., Cheng, B., Asenov, A.: Hierarchical simulation of statistical variability: from 3-D MC with “ab initio” ionized impurity scattering to statistical compact models. IEEE Trans. Electron Devices 57(10), 2418–2426 (2010)

    Google Scholar 

  8. Bukhori, M.F., Roy, S., Asenov, A.: Simulation of statistical aspects of charge trapping and related degradation in bulk MOSFETs in the presence of random discrete dopants. IEEE Trans. Electron Devices 57(4), 795–803 (2010)

    Google Scholar 

  9. Ferry, D., Akis, R., Vasileska, D.: Quantum effects in MOSFETs: use of an effective potential in 3D Monte Carlo simulation of ultra-short channel devices. IEEE Int. Electron Devices Meet. (2000). https://doi.org/10.1109/iedm.2000.904313

    Article  Google Scholar 

  10. Querlioz, D., Saint-Martin, J., Huet, K., Bournel, A., Aubry-Fortuna, V., Chassat, C., Galdin-Retailleau, S., Dollfus, P.: On the ability of the particle Monte Carlo technique to include quantum effects in nano-MOSFET simulation. IEEE Trans. Electron Devices 54(9), 2232–2242 (2007)

    Google Scholar 

  11. Elmessary, M.A., Nagy, D., Aldegunde, M., Lindberg, J., Dettmer, W.G., Peric, D., Garcia-Loureiro, A.J., Kalna, K.: Anisotropic quantum corrections for 3-D finite-element Monte Carlo simulations of nanoscale multigate transistors. IEEE Trans. Electron Devices 63(3), 933–939 (2016)

    Google Scholar 

  12. Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55(3), 645–705 (1983)

    Google Scholar 

  13. Gross, W., Vasileska, D., Ferry, D.: A novel approach for introducing the electron–electron and electron–impurity interactions in particle-based simulations. IEEE Electron Device Lett. 20(9), 463–465 (1999)

    Google Scholar 

  14. Granzner, R., Polyakov, V., Schwierz, F., Kittler, M., Luyken, R., Rösner, W., Städele, M.: Simulation of nanoscale MOSFETs using modified drift-diffusion and hydrodynamic models and comparison with Monte Carlo results. Microelectron. Eng. 83(2), 241–246 (2006)

    Google Scholar 

  15. Keyes, R.W.: The effect of randomness in the distribution of impurity atoms on FET thresholds. J. Appl. Phys. 8(3), 251–259 (1975)

    Google Scholar 

  16. Mizuno, T., Okumtura, J., Toriumi, A.: Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET’s. IEEE Trans. Electron Devices 41(11), 2216–2221 (1994)

    Google Scholar 

  17. Mizuno, T.: Influence of statistical spatial-nonuniformity of dopant atoms on threshold voltage in a system of many MOSFETs. Jpn. J. Appl. Phys. 35(2S), 842 (1996)

    Google Scholar 

  18. Horstmann, J.T., Hilleringmann, U., Goser, K.F.: Matching analysis of deposition defined 50-nm MOSFET’s. IEEE Trans. Electron Devices 45(1), 299–306 (1998)

    Google Scholar 

  19. Stolk, P.A., Widdershoven, F.P., Klaassen, D.B.M.: Modeling statistical dopant fluctuations in MOS transistors. IEEE Trans. Electron Devices 45(9), 1960–1971 (1998)

    Google Scholar 

  20. Nishinohara, K., Shigyo, N., Wada, T.: Effects of microscopic fluctuations in dopant distributions on MOSFET threshold voltage. IEEE Trans. Electron Devices 39(3), 634–639 (1992)

    Google Scholar 

  21. Zhou, J.R., Ferry, D.K.: 3D simulation of deep-submicron devices. How impurity atoms affect conductance. IEEE Comput. Sci. Eng. 2(2), 30–37 (1995)

    Google Scholar 

  22. Wong, H.S., Taur, Y.: Three-dimensional“ atomistic” simulation of discrete random dopant distribution effects in sub-0.1-\(\mu\)m MOSFET’s. In: IEEE International Electron Devices Meeting (1993)

  23. Vasileska, D., Gross, W.J., Kafedziski, V., Ferry, D.K.: Convergence properties of the Bi-CGSTAB method for the solution of the 3D Poisson and 3D electron current continuity equations for scaled Si MOSFETs. VLSI Des. 8(1–4), 301–305 (1998)

    Google Scholar 

  24. Tang, X., De, V.K., Meindl, J.D.: Intrinsic MOSFET parameter fluctuations due to random dopant placement. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 5(4), 369–376 (1997)

    Google Scholar 

  25. Lugli, P., Ferry, D.K.: Degeneracy in the ensemble Monte Carlo method for high-field transport in semiconductors. IEEE Trans. Electron Devices 32(11), 2431–2437 (1985)

    Google Scholar 

  26. Kriman, A.M., Kann, M.J., Ferry, D.K., Joshi, R.: Role of the exchange interaction in the short-time relaxation of a high-density electron plasma. Phys. Rev. Lett. 65(13), 1619 (1990)

    Google Scholar 

  27. Gross, W.J., Vasileska, D., Ferry, D.K.: 3D simulations of ultra-small MOSFETs with real-space treatment of the electron–electron and electron–ion interactions. VLSI Des. 10(4), 437–452 (2000)

    Google Scholar 

  28. Vasileska, D., Gross, W.J., Ferry, D.K.: Monte Carlo particle-based simulations of deep-submicron n-MOSFETs with real-space treatment of electron–electron and electron–impurity interactions. Superlattices Microstruct. 27(2–3), 147–157 (2000)

    Google Scholar 

  29. Asenov, A.: Random dopant induced threshold voltage lowering and fluctuations in sub-0.1-\(\mu\)m MOSFET’s: A 3-D “atomistic” simulation study. IEEE Trans. Electron Devices 45(12), 2505–2513 (1998)

    Google Scholar 

  30. Asenov, A., Saini, S.: Suppression of random dopant-induced threshold voltage fluctuations in sub-0.1-\(\mu\)m MOSFET’s with epitaxial and \(\delta\)-doped channels. IEEE Trans. Electron Devices 46(8), 1718–1724 (1999)

    Google Scholar 

  31. Dollfus, P., Bournel, A., Galdin, S., Barraud, S., Hesto, P.: Effect of discrete impurities on electron transport in ultrashort MOSFET using 3D MC simulation. IEEE Trans. Electron Devices 51(5), 749–756 (2004)

    Google Scholar 

  32. Lee, K.T., et al.: Technology scaling on high-K metal-gate FinFET BTI reliability. In: IEEE International Reliability Physics Symposium (IRPS) (2013)

  33. Amoroso, S.M., Gerrer, L., Markov, S., Adamu-Lema, F., Asenov, A.: RTN and BTI in nanoscale MOSFETs: a comprehensive statistical simulation study. Solid State Electron. 84, 120–126 (2013)

    Google Scholar 

  34. Markov, S., Amoroso, S.M., Gerrer, L., Adamu-Lema, F., Asenov, A.: Statistical interactions of multiple oxide traps under BTI stress of nanoscale MOSFETs. IEEE Electron Device Lett. 34(5), 686–688 (2013)

    Google Scholar 

  35. Gerrer, L., Ding, J., Amoroso, S.M., Adamu-Lema, F., Hussin, R., Reid, D., Asenov, A.: Modelling RTN and BTI in nanoscale MOSFETs from device to circuit: a review. Microelectron. Reliab. 54(4), 682–697 (2014)

    Google Scholar 

  36. Couso, C., Martin-Martinez, J., Porti, M., Nafria, M., Aymerich, X.: Efficient methodology to extract interface traps parameters for TCAD simulations. Microelectron. Eng. 178, 66–70 (2017)

    Google Scholar 

  37. Rossetto, A.C.J., Camargo, V.V.A., Both, T.H., Vasileska, D., Wirth, G.I.: Statistical analysis of the impact of charge traps in p-Type MOSFETs via particle-based Monte Carlo device simulations. J. Comput. Electron. under review (2019)

  38. Vasileska, D., Goodnick, S.M., Klimeck, G.: Computational Electronics: From Semiclassical to Quantum Transport Modeling. Taylor & Francis, London (2010)

    Google Scholar 

  39. Gagliani, G., Reggiani, L.: Nonparabolicity and intrinsic carrier concentration in Si and Ge. Nuovo Cimento B 30(2), 207–216 (1975)

    Google Scholar 

  40. Dewey, J., Osman, M.A.: Monte Carlo study of hole transport in silicon. J. Appl. Phys. 74(5), 3219–3223 (1993)

    Google Scholar 

  41. Ferry, D.K.: Semiconductor Transport. Taylor & Francis Inc, London (2000)

    Google Scholar 

  42. Ferry, D.K.: First-order optical and intervalley scattering in semiconductors. Phys. Rev. B 14(4), 1605–1609 (1976)

    Google Scholar 

  43. Jacoboni, C., Canali, C., Ottaviani, G., Quaranta, A.A.: A review of some charge transport properties of silicon. Solid State Electron. 20(2), 77–89 (1977)

    Google Scholar 

  44. Chou, S., Antoniadis, D., Smith, H.: Observation of electron velocity overshoot in sub-100-nm-channel MOSFETs in Silicon. IEEE Electron Device Lett. 6(12), 665–667 (1985)

    Google Scholar 

  45. Sai-Halasz, G., Wordeman, M., Kern, D., Rishton, S., Ganin, E.: High transconductance and velocity overshoot in NMOS devices at the 0.1-\(\mu\)m gate-length level. IEEE Electron Device Lett. 9(9), 464–466 (1988)

    Google Scholar 

  46. Takagi, S., Toriumi, A., Iwase, M., Tango, H.: On the universality of inversion layer mobility in Si MOSFETs: part I-effects of substrate impurity concentration. IEEE Trans. Electron Devices 41(12), 2357–2362 (1994)

    Google Scholar 

  47. Fischetti, M.V., Laux, S.E.: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38(14), 9721–9745 (1988)

    Google Scholar 

  48. van den Biesen, J.J.H.: A simple regional analysis of transit times in bipolar transistors. Solid State Electron. 29(5), 529–534 (1986)

    Google Scholar 

  49. Laux, S.: On particle–mesh coupling in Monte Carlo semiconductor device simulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 15(10), 1266–1277 (1996)

    Google Scholar 

  50. Stone, H.L.: Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal. 5(3), 530–558 (1968)

    MathSciNet  MATH  Google Scholar 

  51. Wordelman, C., Ravaioli, U.: Integration of a particle–particle–particle–mesh algorithm with the ensemble Monte Carlo method for the simulation of ultra-small semiconductor devices. IEEE Trans. Electron Devices 47(2), 410–416 (2000)

    Google Scholar 

  52. Gross, W., Vasileska, D., Ferry, D.: Ultrasmall MOSFETs: the importance of the full Coulomb interaction on device characteristics. IEEE Trans. Electron Devices 47(10), 1831–1837 (2000)

    Google Scholar 

Download references

Funding

Funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant Nos. 424034/2016-6 and 305569/2017-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinicius V. A. Camargo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo, V.V.A., Rossetto, A.C.J., Vasileska, D. et al. 3-D Monte Carlo device simulator for variability modeling of p-MOSFETs. J Comput Electron 19, 668–676 (2020). https://doi.org/10.1007/s10825-020-01461-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01461-1

Keywords

Navigation