Skip to main content
Log in

Random telegraph noise in gate-all-around silicon nanowire MOSFETs induced by a single charge trap or random interface traps

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The random telegraph noise (RTN) in gate-all-around (GAA) silicon (Si) nanowire (NW) metal–oxide–semiconductor field-effect transistors (MOSFETs) induced by a single charge trap (SCT) or random interface traps (RITs) is studied for the first time. An experimentally validated three-dimensional quantum-mechanically-corrected device simulation is advanced to investigate the explored devices. The magnitude of the RTN decreases with increasing gate voltage to different extents for the planar MOSFET, bulk FinFET, and GAA Si NW MOSFET devices, owing to the reduction in the conducting carriers along the channel. For the GAA Si NW MOSFET, the reduction of the fluctuation of threshold voltage in the presence of RITs is about 25 and 3 times when compared with the planar MOSFET and bulk FinFET device, respectively, whereas this reduction in the presence of an SCT is about 6 and 2.6 times, respectively. For the GAA Si NW MOSFET, the reduction of the RTN in the presence of RITs is about 7.5 and 4.7 times when compared with the planar MOSFET and bulk FinFET device, respectively, whereas this reduction in the presence of an SCT is about 22 and 6 times, respectively. At given threshold voltage, compared with the results for the planar MOSFETs and bulk FinFET, the GAA Si NW MOSFET exhibits minimal characteristic variability and RTN owing to the ultimate electrostatic control of the gate from the point of view of electrostatic integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sung, W.L., Li, Y.: DC/AC/RF characteristic fluctuations induced by various random discrete dopants of gate-all-around silicon nanowire n-MOSFETs. IEEE Trans. Electron Devices 65(6), 2638–2646 (2018)

    Article  Google Scholar 

  2. Appenzeller, J., Knoch, J., Björk, M.T., Riel, H., Schmid, H., Riess, W.: Toward nanowire electronics. IEEE Trans. Electron Devices 55(11), 2827–2848 (2008)

    Article  Google Scholar 

  3. Bangsaruntip, S., Cohen, G.M., Majumdar, A., Zhang, Y., Engelm Ann, S.U., Fuller, N.C.M., Gignac, L.M., Mittal, S., Newbury, J.S., Guillorn, M., Barwicz, T., Sekaric, L., Frank, M.M., Sleight, J.W.: High performance and highly uniform gate-all-around silicon nanowire MOSFETs with wire size dependent scaling. In: Technical digest IEDM, pp. 297–300 (2009)

  4. Suzuki, A., Kamioka, T., Kamakura, Y., Ohmori, K., Yamada, K., Watanabe, T.: Source-induced RDF overwhelms RTN in nanowire transistor: statistical analysis with full device EMC/MD simulation accelerated by GPU computing. In: Technical Digest IEDM, pp. 30.1.1–30.1.4 (2014)

  5. Mori, N., Milnikov, G., Minari, H., Kamakura, Y., Zushi, T., Watanabe, T., Uematsu, M., Itoh, K.M., Uno, S., Tsuchiya, H.: Nano-device simulation from an atomistic view. In: Technical Digest IEDM, pp. 5.1.1–5.1.4 (2013)

  6. Uematsu, M., Itoh, K.M., Milnikov, G., Minari, H., Mori, N.: Simulation of the effect of arsenic discrete distribution on device characteristics in silicon nanowire transistors. In: Technical Digest IEDM, pp. 30.4.1–30.4.4 (2012)

  7. Lee, Y.M., Na, M.H., Chu, A., Young, A., Hook, T., Liebmann, L., Nowak, E.J., Back, S.H., Sengupta, R., Trombley, H., Miao, X.: Accurate performance evaluation for the horizontal nanosheet standard-cell design space beyond 7-nm technology. In: Technical Digest IEDM, pp. 29.3.1–29.3.4 (2017)

  8. Li, Y., Chou, H.M., Lee, J.W.: Investigation of electrical characteristics on surrounding-gate and omega-shaped-gate nanowire FinFETs. IEEE Trans. Nano. Tech. 4(5), 510–516 (2005)

    Article  Google Scholar 

  9. Mertens, H., Ritzenthaler, R., Pena, V., Santoro, G., Kenis, K., Schulze, A., Litta, E.D., Chew, S.A., Devriend, K., Chiarella, T., Demuynck, S., Yakimets, D., Jang, D., Spessot, A., Eneman, G., Dangol, G., Lagrain, P., Bender, H., Sun, S., Korolik, M., Kioussi, D., Kim, M., Bu, K.H., Chen, C.S., Cogorno, M., Devrajan, J., Machillot, J., Yoshida, N., Kim, N., Barla, K., Mocuta, D., Horiguchi, D.: Vertically stacked gate-all-around Si nanowire transistors: key process optimizations and ring oscillator demonstration. In: Technical Digest IEDM, pp. 37.4.1–37.4.4 (2017)

  10. Li, Y., Chang, H.T., Lai, C.N., Chao, P.J., Chen, C.Y.: Process variation effect, metal-gate work-function fluctuation and random dopant fluctuation of 10-nm gate-all-around silicon nanowire MOSFET devices. In: Technical Digest IEDM, pp. 34.4.1–34.4.4 (2015)

  11. Li, Y., Cheng, H.W.: Statistical device simulation of physical and electrical characteristic fluctuations in 16-nm-gate high-κ/metal gate MOSFETs in the presence of random discrete dopants and random interface traps. Solid. State. Electron 77, 12–19 (2012)

    Article  Google Scholar 

  12. Sung, W.L., Li, Y.: Asymmetric characteristic fluctuation of undoped gate-all-around nanowire MOSFETs induced by random discrete dopants inside source/drain extensions. In: IEEE 17th International Conference on Nanotechnology, NANO, pp. 43–46.

  13. Fan, M.L., Hu, V.P.H., Chen, Y.N., Su, P., Chuang, C.T.: Analysis of single-trap-induced random telegraph noise on FinFET devices 6T SRAM cell and logic circuit. IEEE Trans. Electron Devices, vol. 59, no. 8, pp. 2227–2234 (2012)

  14. Realov, S., Shepard, K.L.: Analysis of random telegraph noise in 45-nm CMOS using on-chip characterization system. IEEE Trans. Electron Device 60(5), 1716–1722 (2013)

    Article  Google Scholar 

  15. Kirton, M.J., Uren, M.J.: Noise in solid-state microstructures: a new perspective on individual defects, interface states and low-frequency (1/ƒ) noise. Adv. Phys. 38, 367–468 (1988)

    Article  Google Scholar 

  16. Ralls, K.S., Skocpol, W.J., Jackel, L.D., Howard, R.E., Fetter, L.A., Epworth, R.W., Tennant, D.M.: Discrete resistance switching in submicrometer silicon inversion layers: individual interface traps and low frequency (1/f) noise. Phys. Rev. Lett. 52(3), 228–231 (1984)

    Article  Google Scholar 

  17. Fan, M.L., Hu, V.P.H., Chen, Y.N., Su, P., Chuang, C.T.: Analysis of single-trap-induced random telegraph noise on FinFET devices. 6T SRAM cell and logic circuit. IEEE Trans. Electron Device, 59(8), pp. 2227–2234 (2012)

  18. Fan, M.L., Hu, V.P.H., Chen, Y.N., Su, P., Chuang, C.T.: Impacts of random telegraph noise on FinFET devices, 6T SRAM cell, and logic circuits. In: IEEE International Reliability Physics Symposium, pp. CR.1.1-CR.1.6 (2012)

  19. Yang, F.-L., Lee, D.H., Chen, H.Y., Chang, C.Y., Liu, S.D., Hung, C.C., Chung, T.X., Chen, H.W., Hung, C.C., Liu, Y.- H., Wu, C.C., Chen, C.C., Chen, S.C., Chen, Y.T., Chen, C.J., Chan, B.W., Hsu, P.F., Shieh, J.H., Tao, H.J., Yeo, Y.C., Li, Y., Lee, J.W., Chen, P., Liang, M.S., Hu, C.: 5nm-gate nanowire FinFET. In: Digest Technology Paper Symposium, VLSI Technology, pp. 196–197 (2004)

  20. Li, Y., Yu, S.M., Hwang, J.R., Yang, F.L.: Discrete dopant fluctuations in 20-nm/15-nm-gate planar CMOS. IEEE Trans. Electron Device 55(6), 449–1455 (2008)

    Google Scholar 

  21. Hsu, S.C., Li, Y.: Electrical characteristic fluctuation of 16-nm-gate high-κ/metal gate bulk FinFET devices in the presence of random interface traps. Nanoscale Res. Lett. 9, 633 (2014)

    Article  Google Scholar 

  22. Schenk, A.: Rigorous theory and simplified model of the band-to-band tunneling in silicon. Solid-State Electron. 36, 19–34 (1993)

    Article  Google Scholar 

  23. Chang, H., Li, Y.: Random dopant fluctuation in 10-nm-gate multi-channel gate-all-around nanowire field effect transistors. NSTI Nanotech. Conf. 3, 5–8 (2014)

    Google Scholar 

  24. Li, Y., Hwang, H.C., Huang, H.M.: Large-scale atomistic approach to discrete-dopant-induced characteristic fluctuations in silicon nanowire transistors. Phys. Status Solidi (a) 205, 1505–1510 (2008)

    Article  Google Scholar 

  25. Mertens, H., Ritzenthaler, R., Chasin, A., Scharam, T., Kunnen, E., Kikavya, A., Ragnarsson, L. A., Dekkers, H., Hopf, T., Wostyn, K., Devriendt, K., Chew, S.A., Kim, M.S., Kikuchi, Y., Rosseel, E., Mannaert, G., Kubicek, S., Demuynck, S., Dangol, A., Bosman, N., Geypen, J., Carolan, P., Bender, H., Barla, K., Horiguchi, N., Mocuta, D.: Vertically stacked gate-all-around Si nanowire CMOS transistors with dual work function metal gates. In: Technical Digest IEDM, pp. 19.7.1–19.7.4 (2017)

  26. Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 96(4), 2192–2203 (2004)

    Article  Google Scholar 

  27. Ritzenthaler, R., Mertens, H., Pena, V., Santoro, G., Chasin, A., Kenis, K., Devriendt, K., Mannaert, G., Dekkers, H., Dangol, A., Lin, Y., Sun, S., Chen, Z., Kim, M., Machillot, J., Mitard, J., Yoshida, N., Kim, N., Mocuta, D., Horiguchi, D.: Vertically stacked gate-all-around Si nanowire CMOS transistors with reduced vertical nanowires separation, new work function metal gate solutions, and DC/AC performance optimization. In: Technical digest IEDM, pp. 21.5.1–21.5.4 (2018)

  28. Yu, B., Wang, L., Yuan, Y., Asbeck, P.M., Taur, Y.: Scaling of nanowire transistor. IEEE Trans. Electron Device 55(11), 2846–2858 (2008)

    Article  Google Scholar 

  29. Cassél, M., Tachi, K., Thiele, S., Ernst, T.: Spectroscopic charge pumping in Si nanowire transistors with a high-κ/metal gate. Appl. Phys. Lett. 96(12), 123506–123513 (2010)

    Article  Google Scholar 

  30. Cheng, H.W., Li, F.-H., Han, M.-H., Yiu, C.-Y., Yu, C.-H., Lee, K.-F., Li, Y.: 3D device simulation of work function and interface trap fluctuations on high-κ/metal gate devices. In: Technical Digest IEDM, pp. 15.6.1–15.6.4 (2010)

  31. Li, Y., Cheng, H.W.: Random Interface-traps-induced electrical characteristic fluctuation in 16-nm-gate high-k/metal gate complementary metal-oxide-semiconductor device and inverter circuit. Jpn. J. Appl. Phys., 51(4), 04DC08 (2012)

  32. Nagy, D., Indalecio, G., GarciaLoureiro, A.J., Elmessary, M.A., Kalna, K., Seoane, N.: FinFET versus gate-all-around nanowire FET: performance, scaling, and variability. IEEE J. Electron Devices Soc. 6, 332–340 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Ministry of Science and Technology, Taiwan, under grant no. 108–2221-E-009–008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kola, S.R., Li, Y. & Thoti, N. Random telegraph noise in gate-all-around silicon nanowire MOSFETs induced by a single charge trap or random interface traps. J Comput Electron 19, 253–262 (2020). https://doi.org/10.1007/s10825-019-01438-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01438-9

Keywords

Navigation