Skip to main content

Advertisement

Log in

Plasmonic effect of metal nanoparticles on enhancing performance of transparent electrodes: a computational investigation

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, metal nanoparticles are used as a new concept to enhance the optical and conductive properties of transparent electrode films. Finite difference time domain (3D-FDTD) numerical analysis is carried out to study the influence of engineered nanoparticles on the electrode transparency and resistivity performances. Our investigation demonstrates that metal nanoparticles are responsible for inducing plasmonic and light trapping effects, where their spatial arrangement, geometry and position in transparent conductive oxide (TCO) play a crucial role in modulating the electrode optical and electrical properties. Besides, an enhanced average transmittance and reduced sheet resistance over the conventional electrodes are recorded. Subsequently, a new hybrid modeling approach based on 3D-FDTD supported by genetic algorithm global optimization is proposed to identify the metal of nanoparticles and their spatial distribution, allowing an excellent trade-off between transparency and resistivity characteristics. Interestingly, the investigated electrode structure with optimized nanoparticles patterning showcases promising pathways for boosting the TCO performances, where it provides a high average figure of merit of 38 × 10−3 Ω−1. Therefore, this systematic investigation can provide more insights concerning the benefit of plasmonic effects for designing high-performance transparent electrodes suitable for optoelectronic and photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guillén, C., Herrero, J.: TCO/metal/TCO structures for energy and flexible electronics. Thin Solid Films 520, 1–17 (2011)

    Article  Google Scholar 

  2. Gogova, D., Thomas, L.K., Camin, B.: Comparative study of gasochromic and electrochromic effect in thermally evaporated tungsten oxide thin films. Thin Solid Films 517, 3326–3331 (2009)

    Article  Google Scholar 

  3. Hssein, M., Tuo, S., Benayoun, S., Cattin, L., Morsli, M., Mouchaal, Y., Addou, M., Khelil, A., Bernède, J.C.: Cu–Ag bi-layer films in dielectric/metal/dielectric transparent electrodes as ITO free electrode in organic photovoltaic devices. Org. Electron. 42, 73–180 (2017)

    Article  Google Scholar 

  4. Wang, T., Lib, B., Rena, N., Huang, L., Li, H.: Influence of Al/Cu thickness ratio and deposition sequence on photoelectric property of ZnO/Al/Cu/ZnO multilayer film on PET substrate prepared by RF magnetron sputtering. Mater. Sci. Semicond. Process. 91, 73–80 (2019)

    Article  Google Scholar 

  5. Ferhati, H., Djeffal, F.: Graded band-gap engineering for increased efficiency in CZTS solar cells. Opt. Mater. 76, 393–399 (2018)

    Article  Google Scholar 

  6. Lee, S.Y., Park, Y.S., Seong, T.: Optimized ITO/Ag/ITO multilayers as a current spreading layer to enhance the light output of ultraviolet light-emitting diodes. J. Alloys Compd. 776, 960–964 (2019)

    Article  Google Scholar 

  7. Kim, J.H., Yer, I.H.: Characterization of ZnO nanowires grown on Ga-doped ZnO transparent conductive thin films: effect of deposition temperature of Ga-doped ZnO thin films. Ceram. Int. 42, 3304–3308 (2016)

    Article  Google Scholar 

  8. Sharma, V., Vyas, R., Bazylewski, P., Chang, G.S., Asokan, K., Sachdev, K.: Probing the highly transparent and conducting SnOx/Au/SnOx structure for futuristic TCO applications. RSC Adv. 6, 29135–29141 (2016)

    Article  Google Scholar 

  9. Seeger, S., Ellmer, K., Weise, M., Gogova, D., Ras, D.A., Mientus, R.: Reactive magnetron sputtering of Nb-doped TiO2 films: relationships between structure, composition and electrical properties. Thin Solid Films 605, 44–52 (2016)

    Article  Google Scholar 

  10. Kim, J.H., Kim, D., Kim, S.K., Yoo, Y.Z., Lee, J.H., Kim, S.W., Seong, T.Y.: Highly flexible Al-doped ZnO/Ag/Al-doped ZnO multilayer films deposited on PET substrates at room temperature. Ceram. Int. 42, 3473–3478 (2016)

    Article  Google Scholar 

  11. Miao, D., Jiang, S., Shang, S., Chen, Z.: Highly transparent and infrared reflective AZO/Ag/AZO multilayer film prepared on PET substrate by RF magnetron sputtering. Vacuum 106, 1–4 (2014)

    Article  Google Scholar 

  12. Shakib, M., Kosarian, A., Farshidi, E.: Effects of processing parameters on crystalline structure and optoelectronic behavior of DC sputtered ITO thin film. J. Mater. Sci. Mater. Electron. 28, 787–797 (2017)

    Article  Google Scholar 

  13. Wei, W., Hong, R., Wang, J., Tao, C., Zhang, D.: Electron-beam irradiation induced optical transmittance enhancement for Au/ITO and ITO/Au/ITO multilayer thin films. J. Mater. Sci. Technol. 33, 1107–1112 (2017)

    Article  Google Scholar 

  14. Taha, H., Jiang, Z.T., Yin, C.Y., Henry, D.J., Zhao, X., Trotter, G., Amri, A.: Novel approach for fabricating transparent and conducting SWCNTs/ITO thin films for optoelectronic applications. J. Phys. Chem. C 122, 3014–3027 (2018)

    Article  Google Scholar 

  15. Girtan, M.: Comparison of ITO/metal/ITO and ZnO/metal/ZnO characteristics as transparent electrodes for third generation solar cells. Sol. Energy Mater. Sol. Cells 100, 153–161 (2012)

    Article  Google Scholar 

  16. Gogova, D., Suwardi, A., Kuznetsova, Y.A., Zatsepin, A.F., Mochalov, L.A., Nezhdanov, A., Szyszka, B.: Lanthanum-doped barium stannate—a new type of critical raw materials-free transparent conducting oxide. Int. J. Adv. Appl. Phys. Res. 4, 1–8 (2017)

    Article  Google Scholar 

  17. Liu, L., Ma, S., Wu, H., Zhu, B., Yang, H., Tang, J., Zhao, X.: Effect of the annealing process on electrical and optical properties of SnO2/Ag/SnO2 nanometric multilayer film. Mater. Lett. 149, 43–46 (2015)

    Article  Google Scholar 

  18. Park, S.H., Lee, S.M., Ko, E.H., Kim, T.H., Nah, Y.C., Lee, S.J., Lee, J.H., Kim, H.K.: Roll-to-roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications. Sci. Rep. 6, 33868 (2016)

    Article  Google Scholar 

  19. Kim, Tae-Ho, Park, Sung-Hyun, Kim, Doo-Hee, Nah, Yoon-Chae, Kim, Han-Ki: Roll-to-roll sputtered ITO/Ag/ITO multilayers for highly transparent and flexible electrochromic applications. Sol. Energy Mater. Sol. Cells 160, 203–210 (2017)

    Article  Google Scholar 

  20. Hsu, C.L., Lin, Y.H., Wang, L.K., Hsueh, T.J., Chang, S.P., Chang, S.J.: Tunable UV- and Visible-Light Photoresponse Based on p-ZnO Nanostructures/n-ZnO/Glass Peppered with Au Nanoparticles. ACS Appl. Mater. Interfaces 9, 14935–14944 (2017)

    Article  Google Scholar 

  21. Hsu, C.L., Wu, H.Y., Fang, C.C., Chang, S.P.: Solution-processed UV and visible photodetectors based on Y-doped ZnO nanowires with TiO2 nanosheets and Au nanoparticles. ACS Appl. Energy Mater. 76, 393–399 (2018)

    Google Scholar 

  22. Farmani, A., Miri, M., Sheikhi, M.H.: Tunable resonant Goos–Hänchen and Imbert–Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces. J. Opt. Soc. Am B 34, 1097–1106 (2017)

    Article  Google Scholar 

  23. Farmani, A., Miri, M.: Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photonics Technol. Lett. 31, 643–646 (2019)

    Article  Google Scholar 

  24. ATLAS user’s manual: device simulation software (2012)

  25. Deka, N., Islam, M., Sarswat, P.K., Kumar, G.: Enhancing solar cell efficiency with plasmonic behavior of double metal nanoparticle system. Vacuum 152, 285–290 (2018)

    Article  Google Scholar 

  26. Ferhati, H., Djeffal, F.: New high performance ultraviolet (MSM) TiO2/glass photodetector based on diffraction grating for optoelectronic applications. Optik 127, 7202–7209 (2016)

    Article  Google Scholar 

  27. Ferhati, H., Djeffal, F.: Role of optimized grooves surface -textured front glass in improving TiO2 thin film UV photodetector performance. IEEE Sens. J. 16, 5618–5624 (2016)

    Article  Google Scholar 

  28. Ferhati, H., Djeffal, F.: A novel high-performance self-powered ultraviolet photodetector: concept, analytical modeling and analysis. Superlattices Microstruct. 112, 480–492 (2017)

    Article  Google Scholar 

  29. Haacke, G.: New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086 (1976)

    Article  Google Scholar 

  30. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor (1975)

    MATH  Google Scholar 

  31. Ferhati, H., Djeffal, F.: Planar junctionless phototransistor: a potential high-performance and low-cost device for optical-communications. Opt. Laser Technol. 97, 29–35 (2017)

    Article  Google Scholar 

  32. Chebaki, E., Djeffal, F., Ferhati, H., Bentrcia, T.: Improved analog/RF performance of double gate junctionless MOSFET using both gate material engineering and drain/source extensions. Superlattices Microstruct. 92, 80–91 (2016)

    Article  Google Scholar 

  33. Bencherif, H., Djeffal, F., Ferhati, H.: Performance enhancement of Pt/TiO2/Si UV-photodetector by optimizing light trapping capability and interdigitated electrodes geometry. Superlattices Microstruct. 97, 303–312 (2016)

    Article  Google Scholar 

  34. Guillén, C., Herrero, J.: ITO/metal/ITO multilayer structures based on Ag and Cu metal films for high-performance transparent electrodes. Sol. Energy Mater. Sol. Cells 92, 938–941 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Djeffal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferhati, H., Djeffal, F. Plasmonic effect of metal nanoparticles on enhancing performance of transparent electrodes: a computational investigation. J Comput Electron 19, 333–341 (2020). https://doi.org/10.1007/s10825-019-01412-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01412-5

Keywords

Navigation