Skip to main content
Log in

A scheme for the development of a trinary logic unit (TLU) using polarization-based optical switches

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Frequency-encoded optical processors based on multivalued logic (MVL) will play a significant role in future all-optical networks. In this work, basic optical logic gates are designed using a modified trinary system, exploiting the switching action of semiconductor optical amplifiers (SOAs) based on the principle of the nonlinear rotation of the polarization of a probe beam in the presence of a pump beam. A control unit capable of performing OR, AND, and XOR logic operations depending on the frequency of the control signal is then developed. Finally, a trinary logic unit is designed to execute 27 different logic operations. The feasibility of these proposals is confirmed by simulation results. In this approach, each trinary bit, i.e., “trit,” is represented by a unique frequency, which in turn helps to address the noise margin problem that arises in intensity-encoded MVL systems. This scheme can therefore play an important role in errorless optical computing and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Hillerkuss, D., Schmogrow, R., Schellinger, T., Jordan, M., Winter, M., Huber, G., Vallaitis, T., Bonk, R., Kleinow, P., Frey, F.: 26 Tbits—1 Line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nat. Photon. 5, 364–371 (2011)

    Article  Google Scholar 

  2. Willner, A.E., Khaleghi, S., Chitgarha, M.R., Yilmaz, O.F.: All-optical signal processing. J. Lightwave Technol. 32, 660–680 (2014)

    Article  Google Scholar 

  3. Singh, K., Kaur, G.: Interferometric architectures based all-optical logic design methods and their implementations. Opt. Laser Technol. 69, 122–132 (2015)

    Article  Google Scholar 

  4. Willner, A.E., Khaleghi, S., Chitgarha, M.R., Yilmaz, O.F.: Optics and photonics: key enabling technologies. In: Proceedings of the IEEE, vol. 100, Special Centennial Issue, pp. 1604–1643, 13 May (2012)

  5. Ghosh, A.K., Basuray, A.: Binary to modified trinary number system conversion and vice versa for optical super computing. Nat. Comput. 9, 917–934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Datta, A.K., Basuray, A., Mukhopadhyay, S.: Arithmetic operations in optical computations using a modified trinary number system. Opt. Lett. 14, 426–428 (1989)

    Article  Google Scholar 

  7. Patel, V., Gurumurthy, K.S.: Arithmetic operation in multi-valued logic. Int. J. VLSICS 1(1), 21–32 (2010)

    Article  Google Scholar 

  8. Smith, K.C.: The prospects for multi-valued logic: a technology and applications view. IEEE Trans. Comput. 30(9), 619–634 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bhattacharya, A., Ghosh, A.K., Maity, G.K.: Implementation of quadruple valued flip-flops using CMOS and spatial light modulator-based Savart plate. Int. J. Nanoparticles 10(1–2), 141–164 (2018)

    Article  Google Scholar 

  10. Mandal, S., Mandal, D., Mandal, M.K., Garai, S.K.: Design of optical quaternary adder and subtractor using polarization switching. J. Opt. 48(3), 332–350 (2018)

    Article  Google Scholar 

  11. Ghosh, A.K., Bhattacharya, A., Raul, M., Basuray, A.: Trinary arithmetic and logic unit (TALU) using Savart plate and spatial light modulator (SLM) suitable for optical computation in multivalued logic. Opt. Laser Technol. 44, 1583–1592 (2012)

    Article  Google Scholar 

  12. Band, N.C., Trivedi, A.U.: Review on high performance quaternary arithmetic an logic unit in standard CMOS. Int. J. Recent Innov. Trends Comput. Commun. 2(12), 4176–4179 (2014)

    Google Scholar 

  13. Hurst, S.L.: Multiple-valued logic—its status and its future. IEEE Trans. Comput. C-30(12), 1160–1179 (1984)

    Article  Google Scholar 

  14. Shim, S., Park, S., Hong, S.: Design of advanced multiple-valued D-FF using Neuron-MOS. Int. J. Comput. Sci. Netw. Secur. 6(9B), 118–123 (2006)

    Google Scholar 

  15. Chattopadhyay, T.: All-optical symmetric ternary logic gate. Opt. Laser Techol. 42, 1014–1021 (2010)

    Article  Google Scholar 

  16. Iftekharuddin, K.M., Awwal, A.A.S., Chowdhury, A.M.: Characterization of intensity-coded multi-valued logic circuit implementation. Opt. Eng. 38(3), 508–513 (1999)

    Article  Google Scholar 

  17. Awwal, A.A.S., Karim, M.A., Cherri, A.K.: Polarization-encoded optical shadow-casting scheme: design of multi-output trinary combinational logic units. Appl. Opt. 26(22), 4814–4818 (1987)

    Article  Google Scholar 

  18. Taraphdar, C., Chattopadhyay, T., Roy, J.N.: Designing of an all-optical scheme for single input ternary logical operations. Optik 122, 33–36 (2011)

    Article  Google Scholar 

  19. Chattopadhyay, T.: Design of optical reconfigurable balanced ternary arithmetic logic unit using MEMS based design. Opt. Commun. 356, 123–135 (2015)

    Article  Google Scholar 

  20. Garai, S.K.: Novel method of designing all optical frequency-encoded Fredkin and Toffoli logic gates using semiconductor optical amplifiers. IET Optoelectron. 5(6), 247–254 (2011)

    Article  Google Scholar 

  21. Garai, S.K.: A scheme of developing frequency encoded tristate optical logic operations using semiconductor optical amplifier. J. Mod. Opt. 57(6), 419–428 (2010)

    Article  Google Scholar 

  22. Mandal, S., Mandal, D., Mandal, M.K., Garai, S.K.: A scheme of developing all-optical frequency encoded ternary half adder using polarization switch. In: The International Conference on Fiber Optics and Photonics 2016, OSA, 4–8 December, 2016, IIT Kanpur, India (2016). https://doi.org/10.1364/photonics.2016.th3a.34

  23. Kai, S., Ping, Y.: The symmetric MSD encoder for one-step adder of ternary optical computer. Opt. Commun. 372, 221–228 (2016)

    Article  Google Scholar 

  24. Dorren, H.J.S., Lenstra, D., Liu, Y., Hill, M.T., Khoe, G.: Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories. IEEE J. Quantum Electron. 39(1), 141–148 (2003)

    Article  Google Scholar 

  25. Dutta, N.K., Wang, Q.: Semiconductor Optical Amplifiers. World Scientific, Singapore (2006)

    Book  Google Scholar 

  26. Mandal, D., Mandal, S., Garai, S.K.: A new approach of developing all-optical two bit binary data multiplier. Opt. Laser Technol. 64, 292–301 (2014)

    Article  Google Scholar 

  27. Mandal, S., Mandal, D., Garai, S.K.: An all-optical method of developing data communication system with error detection circuit. Opt. Fibre Technol. 20(2), 120–129 (2014)

    Article  Google Scholar 

  28. Mandal, S., Mandal, D., Mandal, M.K., Garai, S.K.: Design of frequency-encoded data-based optical master-slave-JK flip-flop using polarization switch. Opt. Eng. 56(6), 066105 (2017)

    Article  Google Scholar 

  29. Yongjun, W., Xinyu, L., Qinghua, T., Lina, W., Xiangjun, X.: All-optical clocked flip-flops and random access memory cells using the nonlinear polarization rotation effect of low-polarization-dependent semiconductor optical amplifiers. Opt. Commun. 410, 846–854 (2018)

    Article  Google Scholar 

  30. Chen, X., Huo, L., Zhao, Z., Zhuang, L., Lou, C.: Study on 100-Gb/s reconfigurable all-optical logic gates using a single semiconductor optical amplifier. Opt. Express 24(26), 30245–30253 (2016)

    Article  Google Scholar 

  31. Zhang, L., Kang, I., Bhardwaj, A., Sauer, N., Cabot, S., Jaques, J., Nielson, D.T.: Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells. IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006)

    Article  Google Scholar 

  32. Girardin, F., Guekos, G., Houbavlis, A.: Gain recovery of bulk semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 10(6), 784–786 (1998)

    Article  Google Scholar 

  33. Manning, R.J., Davies, D.A.O.: Three-wavelength device for all-optical signal processing. Opt. Lett. 19(12), 889–891 (1994)

    Article  Google Scholar 

  34. Sugawara, M., Akiyama, T., Hatori, N., Nakata, Y., Ebe, H., Ishikawa, H.: Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators. Meas. Sci. Technol. 13(11), 1683–1691 (2002)

    Article  Google Scholar 

  35. Tajima, K.: All-Optical switch with switch-off time unrestricted by carrier lifetime. Jpn. J. Appl. Phys. 32(2), L1746–L1749 (1993)

    Article  Google Scholar 

  36. Leuthold, J., Marom, D.M., Cabot, S., Jaques, J., Ryf, R., Giles, C.R.: All-optical wavelength conversion using a pulse reformatting optical filter. IEEE J. Lightwave Technol. 22(01), 186–192 (2004)

    Article  Google Scholar 

  37. Wang, J., Marculescu, A., Li, J., Vorreau, P., Tzadok, S., Ezra, S.B., Tsadka, S., Freude, W., Leuthold, J.: Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion. IEEE Photon. Technol. Lett. 19(24), 1955–1957 (2007)

    Article  Google Scholar 

  38. Yang, X., Weng, Q., Hu, W.: High speed all optical switches based on cascaded SOAs. In: Garai, S.K. (ed.) Selected Topics on Optical Amplifiers in Present Scenario, pp. 25–46. InTech, London (2012). ISBN: 978-953-51-0391-2.

    Google Scholar 

  39. Garai, S.K.: All-optical quaternary logic gates—an extension of binary logic gates. Opt. Laser Technol. 67, 125–136 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sisir Kumar Garai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

  1. (a)

    The derivation of Eq. (8) [solving from Eqs. (6) and (7)]

From Eq. (6),

$$\frac{{\partial \varphi^{\text{TE}} }}{\partial z} = - \frac{1}{{2v_{\rm g}^{\text{TE}} }}\alpha^{\text{TE}} \varGamma^{\text{TE}} g^{\text{TE}} \left( {z,t} \right).$$

So, \(\partial \varphi^{\text{TE}} \left( {z,t} \right) = - \frac{1}{{2v_{\rm g}^{\text{TE}} }}\alpha^{\text{TE}} \varGamma^{\text{TE}} g^{\text{TE}} \left( {z,t} \right)\partial z\).

Integrating both sides yields

$$\int {{\text{d}}\varphi^{\text{TE}} \left( {z,t} \right)} = \int { - \frac{1}{{2v_{\rm g}^{\text{TE}} }}\alpha^{\text{TE}} \varGamma^{\text{TE}} g^{\text{TE}} \left( {z,t} \right){\text{d}}z}.$$

Since the phase variation takes place only along the Z-direction, the partial derivative reduces to the total derivative:

$$\varphi^{\text{TE}} \left( {L,t} \right) = - \frac{1}{{2v_{\rm g}^{\text{TE}} }}\alpha^{\text{TE}} \varGamma^{\text{TE}} g^{\text{TE}} \left( {L,t} \right)L + C_{1},$$
(14)

where L is the length of the SOA and \(C_{1}\) is a constant depending upon the initial phase of the mode. Here, we consider that the gain remains constant throughout the length of the SOA.

Now, from Eq. (7),

$$\frac{{\partial \varphi^{\text{TM}} }}{\partial z} = - \frac{1}{{2v_{\rm g}^{\text{TM}} }}\alpha^{\text{TM}} \varGamma^{\text{TM}} g^{\text{TM}} \left( {z,t} \right).$$

So, \(\partial \varphi^{\text{TM}} \left( {z,t} \right) = - \frac{1}{{2v_{\rm g}^{\text{TM}} }}\alpha^{\text{TM}} \varGamma^{\text{TM}} g^{\text{TM}} \left( {z,t} \right)\partial z\).

Integrating both sides yields

$$\int {{\text{d}}\varphi^{\text{TM}} \left( {z,t} \right)} = \int { - \frac{1}{{2v_{\rm g}^{\text{TM}} }}\alpha^{\text{TM}} \varGamma^{\text{TM}} g^{\text{TM}} \left( {z,t} \right){\text{d}}z}.$$

Since phase variation takes place only along the Z-direction, the partial derivative reduces to the total derivative:

$$\varphi^{\text{TM}} \left( {L,t} \right) = - \frac{1}{{2v_{\rm g}^{\text{TM}} }}\alpha^{\text{TM}} \varGamma^{\text{TM}} g^{\text{TM}} \left( {L,t} \right)L + C_{2}.$$
(15)

Here we consider that the gain remains constant throughout the length of the SOA.

From Eqs. (14) and (15),

$$\begin{aligned} \varphi^{\text{TM}} \left( {L,t} \right) - \varphi^{\text{TE}} \left( {L,t} \right) & = - \frac{1}{{2v_{\rm g}^{\text{TM}} }}\alpha^{\text{TM}} \varGamma^{\text{TM}} g^{\text{TM}} \left( {L,t} \right)L + C_{2} + \frac{1}{{2v_{\rm g}^{\text{TE}} }}\alpha^{\text{TE}} \varGamma^{\text{TE}} g^{\text{TE}} \left( {L,t} \right)L - C_{1} \\\Delta \varPhi & = \frac{1}{2}\left( {\alpha^{\text{TE}} \varGamma^{\text{TE}} g^{\text{TE}} \left( {L,t} \right) - \alpha^{\text{TM}} \varGamma^{\text{TM}} g^{\text{TM}} \left( {L,t} \right)} \right)L + \left( {C_{2} - C_{1} } \right) \\\Delta \varPhi & = \frac{1}{2}\left( {\alpha^{\text{TE}} \varGamma^{\text{TE}} g^{\text{TE}} \left( {L,t} \right) - \alpha^{\text{TM}} \varGamma^{\text{TM}} g^{\text{TM}} \left( {L,t} \right)} \right)L + \varphi_{0}, \\ \end{aligned}$$

where \(\Delta \varPhi\) and \(\varphi_{0}\) are the phase difference between the two modes at the output of the SOA and the initial phase difference between the two modes at the input of the SOA, respectively.

  1. (b)

    The derivation of Eqs. (11) and (12) [solving from Eqs. (9) and (10)]

From Eq. (11),

$$\frac{{\partial P^{\text{TE}} \left( {z,t} \right)}}{\partial z} = \left[ {\varGamma^{\text{TE}} g^{\text{TE}} \left( {z,t} \right) - \alpha_{\text{int}}^{\text{TE}} } \right]\frac{{P^{\text{TE}} }}{{v_{\rm g}^{\text{TE}} }}.$$

So, \(\frac{{\partial P^{\text{TE}} \left( {z,t} \right)}}{{P^{\text{TE}} }} = \left[ {\varGamma^{\text{TE}} g^{\text{TE}} \left( {z,t} \right) - \alpha_{\text{int}}^{\text{TE}} } \right]\frac{1}{{v_{\rm g}^{\text{TE}} }}\partial z\).

Now, integrating both sides yields

$$\int \limits_{{P_{\text{in}}^{\text{TE}} }}^{{P_{\text{out}}^{\text{TE}} }} \frac{{{\text{d}}P^{\text{TE}} \left( {z,t} \right)}}{{P^{\text{TE}} }} = \int \limits_{0}^{L} \left[ {\varGamma^{\text{TE}} g^{\text{TE}} \left( {z,t} \right) - \alpha_{\text{int}}^{\text{TE}} } \right]\frac{{{\text{d}}z}}{{v_{\rm g}^{\text{TE}} }}.$$

Here also, the variation takes place only along the Z-direction, thus the partial derivative reduces to the total derivative:

$$\begin{aligned} \ln \frac{P_{\rm out}^{\rm TE}}{P_{\rm in}^{\rm TE} } & = \left[ {\varGamma^{\rm TE} g^{\rm TE} \left( {L,t} \right) -\alpha_{\rm int}^{\rm TE}} \right]\frac{L}{v_{\rm g}^{\rm TE} } \\ P_{\rm out}^{\rm TE} &= P_{\rm in}^{\rm TE} {\text{e}}^{\left[ {\varGamma^{\rm TE} g^{\rm TE} \left( {L,t} \right) - \alpha_{{\rm int}}^{\rm TE}} \right]\frac{L}{v_{\rm g}^{\rm TE} }}. \\ \end{aligned}$$

From Eq. (12),

$$\begin{aligned} \frac{{\partial P^{\text{TM}} \left( {z,t} \right)}}{\partial z} & = \left[ {\varGamma^{\text{TM}} g^{\text{TM}} \left( {z,t} \right) - \alpha_{\text{int}}^{\text{TM}} } \right]\frac{{P^{\text{TM}} }}{{v_{\rm g}^{\text{TM}} }} \\ \frac{{\partial P^{\text{TM}} \left( {z,t} \right)}}{{P^{\text{TM}} }} & = \left[ {\varGamma^{\text{TM}} g^{\text{TM}} \left( {z,t} \right) - \alpha_{\text{int}}^{\text{TM}} } \right]\frac{1}{{v_{\rm g}^{\text{TM}} }}\partial z. \\ \end{aligned}$$

Integrating both sides yields

$$\begin{aligned} \int \limits_{P_{\rm in}^{\rm TM}}^{P_{\rm out}^{\rm TM}} \frac{{\text{d}}P^{\rm TM} \left( {z,t} \right)}{P^{\rm TM} } & = \int \limits_{0}^{L} \left[ \varGamma^{\rm TM} g^{\rm TM} \left( {z,t} \right) - \alpha_{\rm int}^{\rm TM} \right]\frac{{\text{d}}z}{v_{\rm g}^{\rm TM} } \\ \ln \frac{P_{\rm out}^{\rm TM} }{P_{\rm in}^{\rm TM} } & = \left[ {\varGamma^{\rm TM} g^{\rm TM} \left( {L,t} \right) - \alpha_{\rm int}^{\rm TM} } \right]\frac{L}{v_{\rm g}^{\rm TM} } \\ P_{\rm out}^{\rm TM} & = P_{\rm in}^{\rm TM} {\text{e}}^{{\left[ {\varGamma^{\rm TM} g^{\rm TM} \left( {L,t} \right) - \alpha_{\rm int}^{\rm TM} } \right]\frac{L}{v_{\rm g}^{\rm TM} }}}. \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Mandal, D., Mandal, M.K. et al. A scheme for the development of a trinary logic unit (TLU) using polarization-based optical switches. J Comput Electron 18, 584–618 (2019). https://doi.org/10.1007/s10825-019-01310-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01310-w

Keywords

Navigation