Skip to main content
Log in

Investigation of a novel SOI LDMOS using p+ buried islands in the drift region by numerical simulations

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A novel SOI LDMOS with p+ buried islands and p-top layer in the drift region (PBI SOI) is proposed in this letter. At off-state, the high potential is induced from the drain region to the inside of the drift region. The p+ buried islands cause reduced surface field effect and modulate the electric field distribution in the drift region. The buried p-top layer withstands the lateral drain voltage. Thus, the breakdown voltage (BV) of PBI SOI is significantly improved. Meanwhile, the specific on-resistance \((R_\mathrm{on,sp})\) is reduced by improving doping concentration of the drift region, owing to the assisting depletion effect caused by the p+ buried islands. Consequently, the \(R_\mathrm{on,sp}\) of the proposed structure is reduced by 53.7% compared with the conventional SOI LDMOS at the same half-pitch size, the BV and the figure-of-merit \((\hbox {FOM} = \hbox {BV}^{2}/ R_\mathrm{on,sp})\) are observably improved by 24.8% and 235.9% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Stork, M.C.Johannes, Hosey, G.P.: SOI technology for power management in automotive and industrial applications. Solid State Electron. 128, 3–9 (2017)

    Article  Google Scholar 

  2. Udrea, F., Garner, D., Sheng, K., et al.: SOI power devices. Electron. Commun. Eng. J. 12(1), 27–40 (2000)

    Article  Google Scholar 

  3. Cheng, K., Hu, s, Jiang, Y., Yuan, Q., Yang, Dong, Huang, Y., Mei, L., Lin, Z., Zhou, X., Tang, F.: Simulation-based performance analysis of an ultra-low specific on-resistance trench SOI LDMOS with a floating vertical field plate. J. Comput. Electron. 16(1), 83–89 (2017)

    Article  Google Scholar 

  4. Zareiee, M., Orouji, A.A., Mehrad, M.: A novel high breakdown voltage LDMOS by protruded silicon dioxide at the drift region. J. Comput. Electron. 15(2), 611–618 (2016)

    Article  Google Scholar 

  5. Zareiee, M.: Modifying buried layers in nano-MOSFET for achieving reliable electrical characteristics. ECS J. Solid State Sci. Technol. 5(10), M113–M117 (2016)

    Article  Google Scholar 

  6. Zareiee, M., Mehrad, M.: A reliable nano device with appropriate performance in high temperatures. ECS J. Solid State Sci. Technol. 6(4), M50–M54 (2017)

    Article  Google Scholar 

  7. Orouji, A.A., Mehrad, M.: Breakdown voltage improvement of LDMOSs by charge balancing: an inserted P-layer in trench oxide (IPT-LDMOS). Superlattices Microstruct. 51(3), 412–420 (2012)

    Article  Google Scholar 

  8. Mehrad, M., Orouji, A.A., Taheri, M.: A new technique in LDMOS transistors to improve the breakdown voltage and the lattice temperature. Mater. Sci. Semicond. Process. 34, 276–280 (2015)

    Article  Google Scholar 

  9. Hu, X.R., Zhang, B., Luo, X.R., Liang, Y.G., Chen, X., Li, Z.J.: A new high voltage SOI LDMOS with triple RESURF structure. J. Semicond. 32(7), 1–4 (2011)

    Google Scholar 

  10. Orouji, A.A., Rahimifar, A., Jozi, M.: A novel double-gate SOI MOSFET to improve the floating body effect by dual SiGe trench. J. Comput. Electron. 15(2), 537–544 (2016)

    Article  Google Scholar 

  11. Chen, Y.H., Hu, S.D., Cheng, K., Jiang, Y.Y., Zhou, J.L., Tang, F., Zhou, X.C., Gan, P.: Improving breakdown performance for novel LDMOS using \(n^{+}\) floating islands in substrate. Electron. Lett. 52(8), 658–659 (2016)

    Article  Google Scholar 

  12. Son, W.S., Sohn, Y.H., Choi, S.Y.: RESURF LDMOSFET with a trench for SOI power integrated circuits. Microelectron. J. 35(5), 393–400 (2004)

    Article  Google Scholar 

  13. Hardikar, S., Souza, M.M.D., Xu, Y.Z., et al.: A novel double RESURF LDMOS for HVIC’s. Microelectron. J. 35(3), 305–310 (2004)

    Article  Google Scholar 

  14. Han, S.Y., Kim, H.W., Chung, S.K.: Surface field distribution and breakdown voltage of RESURF LDMOSFETs. Microelectron. J. 31(8), 685–688 (2000)

    Article  Google Scholar 

  15. Taurus-MEDICI User Guide. Version D-2010.03, Synopsys, Mountain View, CA, USA, Mar. (2010)

  16. Hu, Y., Huang, Q.J., Wang, G.F.: A novel high-voltage(\(> 600 \text{ V }\)) LDMOSFET with buried N-Layer in partial SOI technology. IEEE Trans. Electron Devices 59(4), 1131–1136 (2012)

    Article  Google Scholar 

  17. Luo, X.R., Li, Z.J., Zhang, B.: Realization of high voltage(\(> 700 \text{ V }\)) in new SOI devices with a compound buried layer. IEEE Electron Device Lett. 29(12), 1395–1397 (2008)

    Article  Google Scholar 

  18. Luo, X.R., Zhang, B., Li, Z.J.: A novel 700-V SOI LDMOS with double-sided trench. IEEE Electron Device Lett. 28(5), 422–424 (2007)

    Article  Google Scholar 

  19. Roig, J., Flores, D., Hidalgo, S., et al.: Study of novel techniques for reducing self-heating effects in SOI power LDMOS. Solid State Electron. 46(12), 2123–2133 (2002)

    Article  Google Scholar 

  20. Lun, Z., Du. G., Qin, J., et al: Investigation of self-heating effect in SOI-LDMOS by device simulation. In: IEEE International Conference on Solid-State and Integrated Circuit Technology, pp. 1–3 (2012)

  21. Jiang, L.: Hot carrier effect on LDMOS transistors. Dissertation for the degree of Doctor of Philosophy (2007)

  22. Wang, C.: Hot Carrier Design Considerations for MOS Devices and Circuits, pp. 250–310. Springer, Berlin (1992)

    Book  Google Scholar 

  23. Shahabuddin, S., Goh, K.K., Goh, K.K., et al.: Voltage dependences of parameter drifts in hot carrier degradation for n-channel LDMOS transistor. Microelectron. Eng. 109(C), 101–104 (2013)

    Article  Google Scholar 

  24. Wei, J., Zhang, C., Liu, S., et al.: Investigation on Hot-Carrier-Induced degradation of STI-nLDMOS with two-step-oxide process for high side application. In: International Symposium on Power Semiconductor Devices and ICS, pp. 383–386. IEEE (2016)

  25. Liu, S., Li, S., Li, Z., et al.: Lateral DMOS with partial-resist-implanted drift region for alleviating hot-carrier effect. IEEE Trans. Device Mater. Reliab. 99, 1–1 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61574023), the Open Funds of State Key Laboratory of Vehicle NVH and Safety Technology (Grant Nos. NVHSKL-201414 and 201608), and Innovative support program for returned overseas students in Chongqing (Grant No. cx2017009) and Chongqing Key R&D Project (Grant No. cstc2017zdcy-zdyfx0090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengdong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Hu, S., Yang, D. et al. Investigation of a novel SOI LDMOS using p+ buried islands in the drift region by numerical simulations. J Comput Electron 17, 646–652 (2018). https://doi.org/10.1007/s10825-018-1168-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1168-y

Keywords

Navigation