Skip to main content
Log in

Confinement of generated terahertz waves between two metal surfaces by a nanowaveguide

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this study, a new nanowaveguide is designed and modeled. Light confinement by the nanowaveguide generates a 1-terahertz (THz) wave with narrow bandwidth. A difference-frequency generation (DFG) technique based on the nonlinear property of a gallium arsenide crystal is used in the model for generation of the THz wave. All calculations are based on the method of finite difference time domain. The feasible conditions of phase matching are evaluated, and the structural parameters of the nanowaveguide are optimized. It was found that the simultaneous use of two parallel plasmonic surfaces in the structure improves THz output power of the nanowaveguide in comparison with that of other similar waveguides. The nanowaveguide output power is several times larger than the output power of the other waveguides based on DFG technique in all scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007)

    Article  Google Scholar 

  2. Vodopyanov, K.L.: Optical THz-wave generation with periodically-inverted GaAs. Laser Photon. Rev. 2(1–2), 11–25 (2008)

    Article  Google Scholar 

  3. Ding, Y.J., Khurgin, J.B.: A new scheme for efficient generation of coherent and incoherent sub-millimeter to THz waves in periodically-poled lithium niobate. Opt. Commun. 148, 105–109 (1998)

    Article  Google Scholar 

  4. Ding, Y.J.: High-power tunable terahertz sources based on parametric processes and applications. IEEE J. Sel. Top. Quantum Electron. 13(3), 705–720 (2007)

    Article  MathSciNet  Google Scholar 

  5. Marandi, A., Darcie, T.E.: Design a continuous-wave tunable terahertz source using waveguide-phase-matched GaAs. Opt. Express 16, 10427–10433 (2008)

    Article  Google Scholar 

  6. Zangeneh, H.R., Jahromi, M.A.F.: Low loss metallic suspended waveguide for terahertz generation. Opt. Eng. 51, 099002 (2012)

    Article  Google Scholar 

  7. Zangeneh, H.R., Asadnia Fard Jahromi, M.: Terahertz wave generation by nanoconfinement of light. Appl. Opt. 53(9), 1826–1831 (2014)

    Article  Google Scholar 

  8. Flore, A., Berger, V., Rosencher, E., Bravetti, P., Nagle, J.: Phase matching using an isotropic nonlinear optical material. Nature 391, 463–466 (1998)

    Article  Google Scholar 

  9. Rahmatian, F., Jaeger, N.A.F., James, R., Berolo, E.: An ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar electrodes. IEEE Photon. Technol. Lett. 10(5), 675–677 (1998)

    Article  Google Scholar 

  10. Tsuchizawa, T., Yamada, K., Fukuda, H., Watanabe, T., Takahashi, J., Takahashi, M., Shoji, T., Tamechika, E., Itabashi, S., Morita, H.: Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005)

    Article  Google Scholar 

  11. Almeida, V.R., Xu, Q., Barrios, C.A., Lipson, M., Lipson, M.: Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209–1211 (2004)

    Article  Google Scholar 

  12. Thylén, L., Qiu, M., Anand, S.: Photonic crystals—a step towards integrated circuits for photonics. Chem. Phys. Chem. 5, 1268–1283 (2004)

    Article  Google Scholar 

  13. Dai, D., He, S.: A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Express 17, 16646–16653 (2009)

    Article  Google Scholar 

  14. Staus, C., Kuech, T., McCaughan, L.: Continuously phase-matched terahertz difference frequency generation in an embedded waveguide structure supporting only fundamental modes. Opt. Express 16, 13296–13303 (2008)

    Article  Google Scholar 

  15. Chen, L., Shakya, J., Lipson, M.: Subwavelength confinement in an integrated metal slot waveguide on silicon. Opt. Lett. 31, 2133–2135 (2006)

    Article  Google Scholar 

  16. Lee, Y.: Principles of Terahertz Science and Technology. Springer, New York (2008)

    Google Scholar 

  17. Grischkowsky, D., Keiding, S., van Exter, M., Fattinger, C.: Far-infrared time-domain spectroscopy with terahertz beam of dielectric and semiconductor. J. Opt. Soc. Am. B 7, 2006–2015 (1990)

    Article  Google Scholar 

  18. Dai, J., Zhang, J., Zhang, W., Grischkowsky, D.: Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon. J. Opt. Soc. Am. B 21, 1379–1386 (2004)

    Article  Google Scholar 

  19. Dhillon, S.S., Sirtori, C., Alton, J., Barbieri, S., De Rossi, A., Beere, A.E., Ritchie, D.A.: Terahertz transfer onto a telecom optical carrier. Nat. Photon. 1, 411–415 (2007)

    Article  Google Scholar 

  20. Okamoto, K.: Fundamental of Optical Waveguide, 2nd edn. Elsevier, Amsterdam (2006)

    Google Scholar 

  21. Dai, D., He, S.: Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Opt. Express 18, 17958–17966 (2010)

    Article  Google Scholar 

  22. Dai, D., He, S.: A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Express 17, 16646–16653 (2009)

    Article  Google Scholar 

  23. Ruan, Z., Veronis, G., Vodopyanov, K.L., Fejer, M.M., Fan, S.: Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides. Opt. Express 17(16), 13502–13515 (2009)

    Article  Google Scholar 

  24. Koziel, S., Leifsson, L.: Simulation-Driven Design by Knowledge-Based Response Correction Techniques. Springer, Switzerland (2016)

    Book  MATH  Google Scholar 

  25. Alessandri, F., Dionigi, M., Mongiardo, M., Sorrentino, R.: Efficient full-wave automated design and yield analysis of waveguide components. Int. J. RF Microw. 8(3), 200–207 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Zangeneh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zangeneh, H.R., Moradiannejad, F. Confinement of generated terahertz waves between two metal surfaces by a nanowaveguide. J Comput Electron 17, 463–469 (2018). https://doi.org/10.1007/s10825-017-1111-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1111-7

Keywords

Navigation