Skip to main content
Log in

Low cross-polarization antipodal tapered slot antenna with gain bandwidth enhancement for UWB application

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The problems for the antipodal tapered slot antenna (ATSA) with impedance bandwidth greater than 10:1 including main beam tilt and split, high cross-polarization component, and low gain at high frequencies narrow its gain bandwidth. The concept of a dielectric sheet-covered ATSA (DATSA) exploiting the coupling between the antenna and dielectric sheets is adopted to solve the issue. The original ATSA and proposed DATSA are simulated, fabricated and tested. The simulated results show good agreement with the measured results. In the range of 3.68–50 GHz, S11 of both antennas are less than −10 dB. Measured far-field results present the DATSA could generate well-formed end-fire beam with low cross-polarization of less than −13 dB and achieve boresight gain of more than 10 dBi over the range of 10–22 GHz, more than 14.6 dBi over the range of 23–30 GHz, more than 16.5 dBi over the range of 31–40 GHz, and more than 14 dBi over 41–50 GHz. Compared to the ATSA, the average boresight gain increase of 5.45 dBi is achieved in the range of 10–50 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Moosazadeh, M., Kharkovsky, S., Case, J.T., Samali, B.: Improved radiation characteristics of small antipodal Vivaldi antenna for microwave and millimeter wave imaging applications. IEEE Antennas Wirel. Propag. Lett. 16, 1961–1964 (2017)

    Article  Google Scholar 

  2. Yurduseven, O., Smith, D., Elsdon, M.: Printed slot loaded bow-tie antenna with super wideband radiation characteristics for imaging applications. IEEE Trans. Antennas Propag. 63, 6206–6210 (2013)

    Article  Google Scholar 

  3. Oloumi, D., Mousavi, P., Pettersson, M.I., Elliott, D.G.: A modified TEM horn antenna customized for oil well monitoring applications. IEEE Trans. Antennas Propag. 61, 5902–5909 (2013)

    Article  Google Scholar 

  4. Bourqui, J., Okoniewski, M., Fear, E.C.: Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging. IEEE Trans. Antennas Propag. 58, 2318–2326 (2010)

    Article  Google Scholar 

  5. Chiappe, M., Gragnani, G.L.: Vivaldi antennas for microwave imaging: theoretical analysis and design considerations. IEEE Trans Instrum. Meas. 55, 1885–1891 (2006)

    Article  Google Scholar 

  6. Ramesh, S., Rao, T.R.: Indoor radio link characterization studies for millimeter wave wireless communications utilizing dielectric-loaded exponentially tapered slot antenna. J. Electromagn. Waves Appl. 29, 551–564 (2015)

    Article  Google Scholar 

  7. Yang, L., Domier, C.W., Luhmann Jr., N.C.: Ka-band E-plane beam steering/shaping phased array system using antipodal elliptically tapered slot antenna. J. Infrared Millim. Terahz Waves 28, 283–289 (2007)

    Article  Google Scholar 

  8. Lin, F., Qi, Y., Fan, J., Jiao, Y.-C.: A 0.7–20 GHz dual-polarized bilaterial tapered slot antenna for EMC measurements. IEEE Trans. Electromagn. Compat. 56, 1271–1275 (2014)

    Article  Google Scholar 

  9. Gibson, P.J.: The Vivaldi aerial. In: Proceedings of the 9th European Microwave Conference, pp. 101–105. Brighton (1979)

  10. Gazit, E.: Improved design of the Vivaldi antenna. IEE Proc. Microw. Antennas Propag. 135, 89–92 (1988)

    Article  Google Scholar 

  11. Langley, J.D.S., Hall, P.S., Newham, P.: Novel ultrawide-bandwith Vivaldi antenna with low cross polarisation. Electron. Lett. 29, 2004–2005 (1993)

    Article  Google Scholar 

  12. Gorai, A., Karmakar, A., Pal, M., Ghatak, R.: A super wideband Chebyshev tapered antipodal Vivaldi antenna. AEU Int. J. Electron. Commun. 69, 1328–1333 (2015)

    Article  Google Scholar 

  13. Mazhar, W., Klymyshyn, D., Qureshi, A.: Log periodic slot-loaded circular Vivaldi antenna for 5–40 GHz UWB application. Microw. Opt. Technol. Lett. 59, 159–163 (2017)

    Article  Google Scholar 

  14. Lin, F., Qi, Y., Jiao, Y.C.: A 0.7–20 GHz strip-fed bilateral tapered slot antenna with low cross polarization. IEEE Antennas Wirel. Propag. Lett. 12, 737–740 (2013)

    Article  Google Scholar 

  15. Molaei, A., Kaboli, M., Mirtaheri, S.A., Abrishamian, M.S.: Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications. IET Microw. Antennas Propag. 8, 1137–1142 (2014)

    Article  Google Scholar 

  16. Teni, G., Zhang, N., Qiu, J., Zhang, P.: Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation. IEEE Antennas Wirel. Propag. Lett. 12, 417–420 (2013)

    Article  Google Scholar 

  17. Juan, L., Guang, F., Lin, Y., Demin, F.: A modified balanced antipodal Vivaldi antenna with improved radiation characteristics. Microw. Opt. Technol. Lett. 55, 1321–1325 (2013)

    Article  Google Scholar 

  18. Amiri, M., Tofigh, F., Yazdi, A.G., Abolhasan, M.: Exponential antipodal Vivaldi antenna with exponential dielectric lens. IEEE Antennas Wirel. Propag. Lett. 16, 1792–1795 (2017)

    Article  Google Scholar 

  19. Nassar, I.T., Weller, T.M.: A novel method for improving antipodal Vivaldi antenna performance. IEEE Trans. Antennas Propag. 63, 3321–3324 (2015)

    Article  Google Scholar 

  20. Zhou, B., Li, H., Zou, X.Y., Cui, T.J.: Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anistropic zero-index metamaterial. Prog. Electromagn. Res. 120, 235–247 (2011)

    Article  Google Scholar 

  21. Chen, L., Lei, Z.Y., Shi, X.W.: Meander-line based broadband artificial material for enhancing the gain of printed end-fire antenna. Prog. Electromagn. Res. 151, 55 (2015)

    Article  Google Scholar 

  22. Pandey, G.K., Meshram, M.K.: Anisotropic artificial material with ENZ and high refractive index property for high gain Vivaldi antenna design. In: 15th Mediterranean Microwave Symposium (MMS), pp. 1–4 (2015)

  23. Sang, L., Li, X.X., Chen, T., Lv, G.Q.: Analysis and design of tapered slot antenna with high gain for ultra-wideband based on optimization of metamaterial unit layout. IET Microw. Antennas Propag. 11, 907–914 (2017)

    Article  Google Scholar 

  24. Li, X.X., Liu, G., Zhang, Y.M., Sang, L., Lv, G.Q.: A compact multi-layer phase correcting lens to improve directive radiation of Vivaldi antenna. Int. J. RF Microw. Comput. Aided Eng. 27, e21109 (2017)

    Article  Google Scholar 

  25. Li, X.X., Lu, B.J., Sang, L., Zhang, Y.M., Lv, G.Q.: Radiation enhanced Vivaldi antenna with shaped dielectric cover. Microw. Opt. Technol. Lett. 59, 1975–1983 (2017)

    Article  Google Scholar 

  26. Yngvesson, K.S., Schaubert, D.H., Korzeniowski, T.L., Kollberg, E.L., Thungren, T., Johansson, J.F.: Endfire tapered slot antennas on dielectric substrates. IEEE Trans. Antennas Propag. 33, 1392–1400 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Anhui Science and Technology Major Project (No. 16030901001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xu, Y., Wang, H. et al. Low cross-polarization antipodal tapered slot antenna with gain bandwidth enhancement for UWB application. J Comput Electron 17, 442–451 (2018). https://doi.org/10.1007/s10825-017-1093-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1093-5

Keywords

Navigation