Skip to main content
Log in

On a superalgebraically converging, numerically stable solving strategy for electromagnetic scattering by impedance cylinders

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

A Correction to this article was published on 31 January 2022

This article has been updated

Abstract

We review guidelines to obtain fast and accurate solutions—based on integral equations—of the Helmholtz equation with mixed boundary values in two dimensions, a crucial issue when modeling electromagnetic phenomena in complex photonic media. We solve the electric- and magnetic-field integral equations (EFIE and MFIE) to treat scattering of electromagnetic waves from transverse magnetic (TM)- and transverse electric (TE)-excited impedance cylinders represented with smoothly parameterized cross-section contours. We show that it is possible to obtain superalgebraic convergence with accurate calculations of the kernels of the integral equations whose singularities vary from weak to hypersingular. These Fredholm equations of the second kind are subject to stable discretization procedures. However, for various values of impedance, numerical stability can be maintained only via analytical regularization. Finally, we provide numerical results that support our conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Gagnon, D., Dub, L. J.: Tutorial; Lorenz-Mie theory for 2D scattering and resonance calculations. arXiv:1505.07691v2 [physics.optics] 22 Sep (2015)

  2. Alvarado-Rodriguez, I., Yablonovitch, E.: Separation of radiation and absorption losses in two-dimensional photonic crystal single defect cavities. J. Appl. Phys. 92(11), 6399 (2002)

    Article  Google Scholar 

  3. Ivanova, O.V., Hammer, M., Stoffer, R., van Groesen, E.: A variational mode expansion mode solver. Opt. Quant. Electron. 39(10–11), 849–864 (2007). ISSN 0306-8919

    Article  Google Scholar 

  4. Gopinath, A., Boriskina, S.V., Feng, N.-N., Reinhard, B.M., Dal Negro, L.: Photonic-plasmonic scattering resonances in deterministic aperiodic structures. Nano Lett. 8(8), 2423–2431 (2008)

    Article  Google Scholar 

  5. Bezus, E.A., Bykov, D.A., Doskolovich, L.L.: Antireflection layers in low-scattering plasmonic optics. Photonics Nanostruct. Fundam. Appl. 14, 101–105 (2015)

    Article  Google Scholar 

  6. Ivanova, O.V., Stoffer, R., Hammer, M.: A dimensionality reduction technique for 2D scattering problems in photonics. J. Opt. 12(3), 035502 (2010). ISSN 2040-8978

    Article  Google Scholar 

  7. M, Hammer: Hybrid analytical/numerical coupled-mode modeling of guided-wave devices. J. Lightwave Technol. 25(9), 2287–2298 (2007). ISSN 0733-8724

    Article  Google Scholar 

  8. Naghizadeh, S., Kocabas, Ş.E.: Guidelines for designing 2D and 3D plasmonic stub resonators. J. Opt, Soc. Am. B 34(1), 207 (2017)

    Article  Google Scholar 

  9. Morita, N., Kumagai, N., Mautz, J.R.: Integral Equ. Methods Electromagn. Artech House, Boston (1991)

    Google Scholar 

  10. Senior, T.B.A., Volakis, J.L.: Approximate Boundary Conditions In Electromagnetics, Iee Electromagnetic Waves Series, vol. 41. IEE Press, London (1995)

    Book  MATH  Google Scholar 

  11. Idemen, M.: Discontinuities In The Electromagnetic Field. Wiley, Hoboken (2011)

    Book  MATH  Google Scholar 

  12. Tuchkin, Y. A.: Electromagnetic Wave Scattering by Smooth Imperfectly Conductive Cylindrical Obstacle, Book Chapter in Ultra-Wideband, Short-Pulse Electromagnetics, vol. 5, pp 137-142. Kluwer Academic/Plenum Publishers, New York(2002) Tuchkin, Y. A.: Electromagnetic Wave Scattering by Smooth Imperfectly Conductive Cylindrical Obstacle, Book Chapter in Ultra-Wideband, Short-Pulse Electromagnetics, vol. 5, pp 137-142. Kluwer Academic/Plenum Publishers, New York(2002)

  13. Sirenko, Y.K., Strom, S.: Modern Theory Of Gratings Resonant Scattering Analysis Techniques And Phenomena. Springer, New York (2010)

    Book  Google Scholar 

  14. Sekulic, I., Ubeda, E., Rius, J.M.: Versatile and accurate schemes of discretization in the scattering analysis of 2D composite objects with penetrable or perfectly conducting regions. IEEE Trans. Antennas Propaga. 65(5), (2017). doi:10.1109/TAP.2017.2679064

  15. Sever, E., Dikmen, F., Tuchkin, Y.A., Sabah, C.: Numerically stable algorithms for scattering by impedance cylinders. Int. J. Mech. 11, 64–68 (2017). ISSN: 1998-4448

    Google Scholar 

  16. Tsalamengas, J.L.: Exponentially converging Nystöm method in scattering from infinite curved smooth strips, part 1, part 2. IEEE Trans. Antenna Propag. 58–10, 3265–3281 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sever, E., Dikmen, F., Suvorova, O., Tuchkin, Y.A.: An analytical formulation with ill-conditioned numerical scheme and its remedy: scattering by two circular impedance cylinders. Turk. J. Electr. Eng. Comput. Sci. 24, 1194–1207 (2016)

    Article  Google Scholar 

  18. Colton, D.L., Kress, R.: Integral Equations Methods In Scattering Theory. Krieger Publishing Company, Malabar (1992)

    MATH  Google Scholar 

  19. Hutson, V., Pym, J.S., Cloud, M.J.: Applications Of Functional Analysis And Operator Theory, 2nd edn. Elsevier Science, Amsterdam (2005). ISBN 0-444-51790-1

  20. Poyedinchuk, A.E., Tuchkin, Y.A., Shestopalov, V.P.: New numerical-analytical methods in diffraction theory. Math. Comput. Model. 32, 1029–1046 (2000)

  21. Vinogradov, S.S., Vinogradova, E.D., Wilson, C., Sharp, I., Tuchkin, Yu.: Scattering of E-polarized plane wave by 2-D airfoil. Electromagnetics 29(3), 268–282 (2009)

  22. Dikmen, F., Tuchkin, Y.A.: Analytical regularization method for electromagnetic wave diffraction by axially symmetrical thin annular strips. Turk. J. Electr. Eng. Comput. Sci. 107–124 (2009). doi:10.3906/elk-0811-10

  23. Dallas, A.G., Hsiao, G.C., Kleinman, R.E.: Observations on the numerical stability of the Galerkin method. Comput. Math. 9, 37–67 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Wandzura, S.: slides of the talk, fast methods for fast computers-, within the program. In: Fast Multipole Method, Tree-Code and Related Approximate Algorithms. Trading Exactness for Efficiency, CSCAMM Program Spring, April 19–30. http://www2.cscamm.umd.edu/programs/fam04/FastTalk_wandzura_fam04.pdf, (2004). Accessed 15 June 2017

  25. Şimşek, E., Liu, J., Liu, Q.H.: A spectral integral method (SIM) for layered media. IEEE Trans. Antennas Propag. 54(6), 1742–1749 (2006)

    Article  Google Scholar 

  26. Hsiao, G.C., Wendland, W.L.: Boundary integral methods in low frequency acoustics. J. Chin. Inst. Eng. 23(3), 369–375 (2000). doi:10.1080/02533839.2000.9670557

    Article  MathSciNet  Google Scholar 

  27. Shestopalov, V., Tuchkin, Yu., Poyedinchuk, A., Sirenko, Yu.: New Methods Of Solution For Direct And Inverse Scattering Problems. Osnova, in Russian, Kharkiv (1997)

    Google Scholar 

  28. Abramowitz, M., Stegun, I.A.: Handbook Of Mathematical Functions With Formulas, Graphs, And Mathematical Tables. Dover Publications, New York (1972)

    MATH  Google Scholar 

  29. Tikhonov, J.A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Winston, New York (1977)

    MATH  Google Scholar 

  30. Kishk, A., Parrikar, R.P., Elsherbeni, A.Z.: Electromagnetic scattering from an eccentric multilayered circular cylinder. IEEE Trans. Antennas Propag. 40, 295–303 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) under research grant 114E927.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Dikmen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sever, E., Tuchkin, Y.A. & Dikmen, F. On a superalgebraically converging, numerically stable solving strategy for electromagnetic scattering by impedance cylinders. J Comput Electron 17, 427–435 (2018). https://doi.org/10.1007/s10825-017-1073-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1073-9

Keywords

Navigation