Skip to main content
Log in

Atomistic tight-binding theory in 2D colloidal CdSe zinc-blende nanoplatelets

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Using atomistic tight-binding theory in conjunction with the configuration interaction description, I investigate the structural and optical properties of colloidal CdSe zinc-blende nanoplatelets. I highlight that the new class of CdSe zinc-blende nanoplatelets has strong thickness and lateral size dependence on the natural properties. In an effort to theoretically demonstrate the dependent atomistic behaviors, the single-particle spectra, orbital occupation, optical band gaps, electron–hole wave function overlaps, oscillation strengths, ground-state Coulomb energies and Stokes shift are realized under different lateral \((l_x)\) and vertical \((l_z)\) sizes. The electronic structures and optical properties of CdSe zinc-blende nanoplatelets are monotonically dependent on the lateral sizes, while those of CdSe zinc-blende nanoplatelets are nonmonotonically sensitive to the vertical sizes. This atomistic prediction will contribute to the understanding of physical behaviors in colloidal CdSe zinc-blende nanoplatelets and will deliver some significant data for experimental study which can be produced by inexpensive means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Flynn, C.J., Oh, E.E., McCullough, S.M., Call, R.W., Donley, C.L., Lopez, R., Cahoon, J.F.: Hierarchically-structured NiO nanoplatelets as mesoscale p-type photocathodes for dye-sensitized solar cells. J. Phys. Chem. C 118(26), 14177–14184 (2014)

    Article  Google Scholar 

  2. Zhang, Y.-Z., Pang, H., Sun, Y., Lai, W.-Y., Wei, Ang, Huang, Wei: Porous tin oxide nanoplatelets as excellent-efficiency photoelectrodes and gas sensors. Int. J. Electrochem. Sci. 8, 3371–3378 (2013)

    Google Scholar 

  3. de Kergommeaux, A., Lopez-Haro, M., Pouget, S., Zuo, J.-M., Lebrun, Colette, Chandezon, Frédéric, Aldakov, Dmitry, Reiss, Peter: Synthesis, internal structure, and formation mechanism of monodisperse tin sulfide nanoplatelets. J. Am. Chem. Soc. 137(31), 9943–9952 (2015)

    Article  Google Scholar 

  4. Li, H., Zhitomirsky, D., Grossman, J.C.: Tunable and energetically robust PbS nanoplatelets for optoelectronic applications. Chem. Mater. 28(6), 1888–1896 (2016)

    Article  Google Scholar 

  5. Achtstein, A.W., Antanovich, A., Prudnikau, A., Scott, R., Woggon, Ulrike, Artemyev, Mikhail: Linear absorption in CdSe nanoplates: thickness and lateral size dependency of the intrinsic absorption. J. Phys. Chem. C 119(34), 20156–20161 (2015)

    Article  Google Scholar 

  6. Vitukhnovsky, A.G., Lebedev, V.S., Selyukov, A.S., Vashchenko, A.A., Vasiliev, R.B., Sokolikova, M.S.: Electroluminescence from colloidal semiconductor CdSe nanoplatelets in hybrid organic–inorganic light emitting diode. Chem. Phys. Lett. 619, 185–188 (2015)

    Article  Google Scholar 

  7. Antanovich, A., Prudnikau, A., Matsukovich, A., Achtstein, A., Artemyev, Mikhail: Self-assembly of CdSe nanoplatelets into stacks of controlled size induced by ligand exchange. J. Phys. Chem. C 120(10), 5764–5775 (2016)

    Article  Google Scholar 

  8. Benchamekh, R., Gippius, N.A., Even, J., Nestoklon, M.O., Jancu, J.-M., Ithurria, S., Dubertret, B., Efros, Al L., Voisin, P.: Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe. Phys. Rev. B 89, 035307–035313 (2014)

    Article  Google Scholar 

  9. Ithurria, S., Tessier, M.D., Mahler, B., Lobo, R.P.S.M., Dubertret, B., Efros, Al L.: Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10, 936–941 (2011)

    Article  Google Scholar 

  10. Mahler, B., Nadal, B., Bouet, C., Patriarche, G., Dubertret, Benoit: Core/shell colloidal semiconductor nanoplatelets. J. Am. Chem. Soc. 134(45), 18591–18598 (2012)

    Article  Google Scholar 

  11. Li, Q., Kaifeng, W., Chen, J., Chen, Z., McBride, James R., Lian, Tianquan: Size-independent exciton localization efficiency in colloidal CdSe/CdS core/crown nanosheet type-I heterostructures. ACS Nano 10(3), 3843–3851 (2016)

    Article  Google Scholar 

  12. Lee, S., Oyafuso, F., von Allmen, P., Klimeck, G.: Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures. Phys. Rev. B 69, 045316–045323 (2004)

    Article  Google Scholar 

  13. Sukkabot, W.: Tight-binding calculation of exciton states in InAs nanocrystals. Integr. Ferroelectr. 156, 29–35 (2014)

    Article  Google Scholar 

  14. Sukkabot, W.: Role of structural and compositional details in atomistic tight-binding calculations for InN nanocrystals. Mater. Sci. Semicond. Process. 38, 142–148 (2015)

    Article  Google Scholar 

  15. Sukkabot, W.: Structural properties of SiC zinc-blende and wurtzite nanostructures: atomistic tight-binding theory. Mater.Sci. Semicond. Process. 40, 117–122 (2015)

    Article  Google Scholar 

  16. Vogl, P., Hjalmarson, H.P., Dow, J.D.: A Semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids 44, 365–378 (1983)

    Article  Google Scholar 

  17. Hakan Gurel, H., Akinci, O., Unlu, H.: Tight binding modeling of CdSe/ZnS and CdZnS/CdS II-VI heterostructures for solar cells: role of d-orbitals. Thin Solid Films 516, 7098–7104 (2008)

    Article  Google Scholar 

  18. Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954)

    Article  MATH  Google Scholar 

  19. Luo, J.W., Franceschetti, A., Zunger, A.: Nonmonotonic size dependence of the dark/bright exciton splitting in GaAs nanocrystals. Phys. Rev. B 79, 201301(R)–201304(R) (2009)

    Article  Google Scholar 

  20. Bester, G., Nair, S., Zunger, A.: Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled \(\text{ In }_{1-x}\text{ Ga }_{x}\text{ As/GaAs }\) quantum dots. Phys. Rev. B 67, 161306(R)–161309(R) (2003)

    Article  Google Scholar 

  21. Korkusinski, M., Hawrylak, P.: Atomistic theory of emission from dark excitons in self-assembled quantum dots. Phys. Rev. B 87, 115310–115320 (2013)

    Article  Google Scholar 

  22. Zieliński, M.: Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots. J. Phys. Condens. Matter. 25, 465301–465316 (2013)

    Article  Google Scholar 

  23. Sheng, W., Cheng, S.-J., Hawrylak, P.: Multiband theory of multi-exciton complexes in self-assembled quantum dots. Phys. Rev. B 71, 035316–035324 (2005)

    Article  Google Scholar 

  24. Lee, S., Jonsson, L., Wilkins, J.W., Bryant, G.W., Klimeck, Gerhard: Electron-hole correlations in semiconductor quantum dots with tight-binding wave functions. Phys. Rev. B 63, 195318–195330 (2001)

    Article  Google Scholar 

  25. Franceschetti, A., Fu, H., Wang, L.W., Zunger, A.: Many-body pseudopotential theory of excitons in InP and CdSe quantum dots. Phys. Rev. B 60, 1819–1829 (1999)

    Article  Google Scholar 

  26. Franceschetti, A., Wang, L.W., Fu, H., Zunger, A.: Short-range versus long-range electron-hole exchange interactions in semiconductor quantum dots. Phys. Rev. B 58, R13367–R13370 (1998)

    Article  Google Scholar 

  27. Chwastyk, M., Rozanski, P., Zielinski, M.: Atomistic calculation of coulomb interactions in semiconductor nanocrystals: role of surface passivation and composition details. Acta Phys. Polon. A 122, 324–328 (2012)

    Article  Google Scholar 

  28. Wang, L.W., Califano, M., Zunger, A., Franceschetti, A.: Pseudopotential theory of Auger processes in CdSe quantum dots. Phys. Rev. Lett. 91, 056404–056407 (2003)

    Article  Google Scholar 

  29. Moreels, I., Allan, G., De Geyter, B., Wirtz, L., Delerue, C., Hens, Z.: Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Krönig analysis of the absorbance spectrum. Phys. Rev. B 81, 235319–235325 (2010)

    Article  Google Scholar 

  30. Ogut, S., Burdick, R., Saad, Y., Chelikowsky, J.R.: Ab initio calculations for large dielectric matrices of confined systems. Phys. Rev. Lett. 90, 127401–127404 (2003)

    Article  Google Scholar 

  31. Delerue, C., Lannoo, M., Allan, G.: Concept of dielectric constant for nanosized systems. Phys. Rev. B 68, 115411–115414 (2003)

    Article  Google Scholar 

  32. Wang, L.W., Zunger, A.: Pseudopotential calculations of nanoscale CdSe quantum dots. Phys. Rev. B 53, 9579–9582 (1996)

    Article  Google Scholar 

  33. Nazzal, A., Huaxiang, F.: Comparative theoretical study of the size dependent electronic and optical properties in CdS and CdSe spherical nanocrystals. J. Comput. Theor. Nanosci. 6, 1277–1289 (2009)

    Article  Google Scholar 

  34. Korkusinski, M., Voznyy, O., Hawrylak, P.: Fine structure and size dependence of exciton and biexciton optical spectra in CdSe nanocrystals. Phys. Rev. B 82, 245304–245319 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the financial support from the Thailand Research Fund Grants (TRG58880072) and Department of Physics, Faculty of Science, Ubon Ratchathani University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Worasak Sukkabot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukkabot, W. Atomistic tight-binding theory in 2D colloidal CdSe zinc-blende nanoplatelets. J Comput Electron 16, 796–804 (2017). https://doi.org/10.1007/s10825-017-1017-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1017-4

Keywords

Navigation