Skip to main content
Log in

Application of generalized logistic functions in surface-potential-based MOSFET modeling

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

An improved surface-potential-based metal–oxide–semiconductor field-effect transistor (MOSFET) model is presented. The improvement consists in introducing a new generalized logistic functional form for the smoothing factor that allows for a continuous transition of the surface potential from the depletion to strong inversion region. This functional form takes into account specific changes in the technological characteristics of MOSFET devices. The model combines the advantages of both regional and single-piece models and satisfies all requirements for compact models, i.e., continuity, accuracy, scalability, and simulation performance. Comparison with numerical data shows that the model provides an accurate description of the surface potential for a wide range of substrate doping and oxide thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pregaldini, F., et al.: An advanced explicit surface potential model physically accounting for the quantization effect in deep-submicron MOSFETs. Solid-State Electron. 48, 427–435 (2004)

    Article  Google Scholar 

  2. Eftimie, S., Rusu, A.: MOSFET model with simple extraction procedures suitable for sensitive analog simulations. Rom. J. Inf. Sci. Tech. 10, 189–197 (2007)

    Google Scholar 

  3. Kumar, M., et al.: Approaches to nanoscale MOSFET compact modeling using surface potential based models, 14th International Workshop on the Physics of Semiconductor Devices. Mumbai, India, December (2007)

    Google Scholar 

  4. van Langevelde, R., Klaassen, F.: An explicit surface-potential-based MOSFET model for circuit simulation. Solid-State Electron. 44, 409–418 (2000)

    Article  Google Scholar 

  5. Chen, T.L., Gildenblat, G.: Analytical approximation for the MOSFET surface potential. Solid-State Electron. 45, 335–339 (2001)

    Article  Google Scholar 

  6. Hossain, M., Chowdhury, M.H.: Comprehensive doping scheme for MOSFETs in ultra-low-power subthreshold circuit design. Microelectron. J. 52, 73–79 (2016)

  7. Sharan, N., Mahapatra, S.: Continuity equation based nonquasi-static charge model for independent double gate MOSFET. J. Comput. Electron. 13(2), 353–359 (2014)

    Article  Google Scholar 

  8. Arora, N.D.: MOSFET models for VLSI circuit simulation. Springer-Verlag, New York (1993)

    Book  Google Scholar 

  9. Enz, C.C., et al.: An Analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog. Integr. Circ. S. 8, 83–114 (1995)

    Article  Google Scholar 

  10. Basu, D., Dutta, A.: An explicit surface-potential-based MOSFET model incorporating the quantum mechanical effects. Solid-State Electron. 50, 1299–1309 (2006)

    Article  Google Scholar 

  11. Kevkić, T. et al.; An improved charge-based MOSFET model with parameterized-logistic fiting functions, Proceed. of 24th International Conference ERK 2015, Vol: A, pp. 15-18. Portorož, Slovenia (2015)

  12. Jukić, D., Scitovski, R.: Solution of the least-squares problem for logistic function. J. Comput. Appl. Math. 156(1), 159–177 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Osrečki, Ž.; Compact MOSFET Model (thesis), University of Zagreb (2015)

  14. Brinson, M.E., Margraf, M.: Verilog-A Compact Semiconductor Device Modelling and Circuit Macromodelling with the QucsStudio-ADMS Turn-Key Modelling System. Int. J. Microelectron. Comp. Sci. 3(1), 32–40 (2012)

    Google Scholar 

  15. Sho, S., et al.: A simulation study of short channel effects with a QET model based on FermiDirac statistics and nonparabolicity for high-mobility MOSFETs. J. Comput. Electron. 15, 76–83 (2016)

    Article  Google Scholar 

  16. Lizzit, D. et al.; Performance benchmarking and effective channel length for nanoscale InAs, In0.53 Ga0.47As, and sSi n-MOSFETs, IEEE Trans. Electron. Devices, 61, pp. 2027-2034 (2014)

  17. Moreau, M., et al.: Simulation study of shortchannel effects and quantum confinement in double-gate FinFET devices with high-mobility materials. Microelectron. Eng. 88, 366–369 (2011)

    Article  Google Scholar 

  18. Mälureanu, E -S.:New approach in determining the tunnelling coefficient for a triangular barrier in MIM junctions, U.P.B. Sci. Bull., Series A, 76, no. 2, pp. 251-262 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladica Stojanović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kevkić, T., Stojanović, V. & Joksimović, D. Application of generalized logistic functions in surface-potential-based MOSFET modeling. J Comput Electron 16, 90–97 (2017). https://doi.org/10.1007/s10825-016-0935-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0935-x

Keywords

Navigation