Skip to main content
Log in

Transient dynamics in the Anderson–Holstein model with interfacial screening

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We study the combined effects of electron–phonon coupling and dot-lead repulsion in the transport properties of the Anderson–Holstein model. We employ a recently proposed nonperturbative method to calculate the transient response of the system. By varying the initial conditions for the time propagation the current exhibits transient oscillations of different nature. We are able to disentangle two dynamical processes, namely the local charge rearrangement due to the dot-lead contacting and the establishment of the nonequilbrium many-body state due to the application of the external bias. These processes involve either Franck–Condon excitations or transitions between the resonant level and the Fermi energy of the leads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We remind that for \(U=0\) the model \(\hat{H}\) threated within the wide-band-limit approximation and the model \(\hat{H}_{c}\) return exactly the same results, that, in turn, do not depend on \(a\), see e.g. Refs.  [2527].

References

  1. Galperin, M., Ratner, M.A., Nitzan, A., Troisi, A.: Nuclear coupling and polarization in molecular transport junctions: beyond tunneling to function. Science 319(5866), 1056–1060 (2008)

    Article  Google Scholar 

  2. LeRoy, B.J., Lemay, S.G., Kong, J., Dekker, C.: Electrical generation and absorption of phonons in carbon nanotubes. Nature 432, 371–374 (2004)

    Article  Google Scholar 

  3. Sapmaz, S., Jarillo-Herrero, P., Blanter, Y.M., Dekker, C., Van Der Zant, H.S.J.: Tunneling in suspended carbon nanotubes assisted by longitudinal phonons. Phys. Rev. Lett. 96, 026801 (2006)

    Article  Google Scholar 

  4. Li, C., Zhang, D., Liu, X., Han, S., Tang, T., Zhou, C., et al.: Fabrication approach for molecular memory arrays. Appl. Phys. Lett. 82(4), 645–647 (2003)

    Article  Google Scholar 

  5. Lörtscher, E., Ciszek, J.W., Tour, J., Riel, H.: Reversible and controllable switching of a single-molecule junction. Small 2(8–9), 973–977 (2006)

    Article  Google Scholar 

  6. Liljeroth, P., Repp, J., Meyer, G.: Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317(5842), 1203–1206 (2007)

    Article  Google Scholar 

  7. Huang, Z., Xu, B., Chen, Y., Ventra, M.D., Tao, N.: Measurement of current-induced local heating in a single molecule junction. Nano Lett. 6(6), 1240–1244 (2006)

    Article  Google Scholar 

  8. Choi, B.Y., Kahng, S.J., Kim, S., Kim, H., Kim, H.W., Song, Y.J., et al.: Conformational molecular switch of the azobenzene molecule: a scanning tunneling microscopy study. Phys. Rev. Lett. 96(15), 156106 (2006)

    Article  Google Scholar 

  9. Meded, V., Bagrets, A., Arnold, A., Evers, F.: Molecular switch controlled by pulsed bias voltages. Small 5(19), 2218–2223 (2009)

    Article  Google Scholar 

  10. Gaudioso, J., Lauhon, L.J., Ho, W.: Vibrationally mediated negative differential resistance in a single molecule. Phys. Rev. Lett. 85(9), 1918 (2000)

    Article  Google Scholar 

  11. Pop, E., Mann, D., Cao, J., Wang, Q., Goodson, K., Dai, H.: Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 95(15), 155505 (2005)

    Article  Google Scholar 

  12. Koch, J., von Oppen, F.: Franck–Condon blockade and giant Fano factors in transport through single molecules. Phys. Rev. Lett. 94(20), 206804 (2005)

    Article  Google Scholar 

  13. Leturcq, R., Stampfer, C., Inderbitzin, K., Durrer, L., Hierold, C., Mariani, E., et al.: Franck–Condon blockade in suspended carbon nanotube quantum dots. Nat. Phys. 5(5), 327–331 (2009)

    Article  Google Scholar 

  14. Wingreen, N.S., Jacobsen, K.W., Wilkins, J.W.: Inelastic scattering in resonant tunneling. Phys. Rev. B 40(17), 11834 (1989)

    Article  Google Scholar 

  15. Mühlbacher, L., Rabani, E.: Real-time path integral approach to nonequilibrium many-body quantum systems. Phys. Rev. Lett. 100(17), 176403 (2008)

    Article  Google Scholar 

  16. Albrecht, K.F., Martin-Rodero, A., Monreal, R.C., Mühlbacher, L., Yeyati, A.L.: Long transient dynamics in the Anderson–Holstein model out of equilibrium. Phys. Rev. B 87(8), 085127 (2013)

    Article  Google Scholar 

  17. Wilner, E.Y., Wang, H., Cohen, G., Thoss, M., Rabani, E.: Bistability in a nonequilibrium quantum system with electron–phonon interactions. Phys. Rev. B 88(4), 045137 (2013)

    Article  Google Scholar 

  18. Wang, H., Thoss, M.: Numerically exact, time-dependent study of correlated electron transport in model molecular junctions. J. Chem. Phys. 138(13), 134704 (2013)

    Article  Google Scholar 

  19. Wilner, E.Y., Wang, H., Thoss, M., Rabani, E.: Nonequilibrium quantum systems with electron–phonon interactions: transient dynamics and approach to steady state. Phys. Rev. B 89(20), 205129 (2014)

    Article  Google Scholar 

  20. For a recent review, see e.g. Zimbovskaya, N. A., Pederson, M. R.: Electron transport through molecular junctions. Phys. Rep. 509(1), 1–87 (2011) and references therein

  21. Perfetto, E., Stefanucci, G.: Image charge effects in the nonequilibrium Anderson–Holstein model. Phys. Rev. B 88(24), 245437 (2013)

    Article  Google Scholar 

  22. Giamarchi, T.: Quantum Physics in One Dimension. Clarendon, Oxford (2004)

    MATH  Google Scholar 

  23. Segal, D., Reichman, D.R., Millis, A.J.: Nonequilibrium quantum dissipation in spin-fermion systems. Phys. Rev. B 76(19), 195316 (2007)

    Article  Google Scholar 

  24. Boulat, E., Saleur, H., Schmitteckert, P.: Twofold advance in the theoretical understanding of far-from-equilibrium properties of interacting nanostructures. Phys. Rev. Lett. 101(14), 140601 (2008)

    Article  MathSciNet  Google Scholar 

  25. Perfetto, E., Stefanucci, G., Cini, M.: Interacting resonant-level model with long-range interactions: fast screening and suppression of the zero-bias conductance. Phys. Rev. B 85(16), 165437 (2012)

    Article  Google Scholar 

  26. Perfetto, E., Stefanucci, G., Cini, M.: Correlation-induced memory effects in transport properties of low-dimensional systems. Phys. Rev. Lett. 105(15), 156802 (2010)

    Article  Google Scholar 

  27. Perfetto, E., Cini, M., Bellucci, S.: Pumping through a Luttinger liquid ring threaded by a time-varying magnetic field. Phys. Rev. B 87(3), 035412 (2013)

    Article  Google Scholar 

  28. Perfetto, E., Stefanucci, G.: On the thermalization of a Luttinger liquid after a sequence of sudden interaction quenches. Europhys. Lett. 95(1), 10006 (2011)

    Article  Google Scholar 

  29. Perfetto, E., Stefanucci, G., Kamata, H., Fujisawa, T.: Time-resolved charge fractionalization in inhomogeneous Luttinger liquids. Phys. Rev. B 89(20), 201413 (2014)

    Article  Google Scholar 

  30. Mahan, G.D.: Excitons in metals. Phys. Rev. Lett. 18(12), 448 (1967)

    Article  Google Scholar 

  31. Nozieres, P., De Dominicis, C.T.: Singularities in the X-ray absorption and emission of metals. III. One-body theory exact solution. Phys. Rev. 178(3), 1097 (1969)

    Article  Google Scholar 

  32. Stefanucci, G., van Leeuwen, R.: Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  33. Dahlen, N.E., van Leeuwen, R.: Solving the Kadanoff–Baym equations for inhomogeneous systems: application to atoms and molecules. Phys. Rev. Lett. 988(15), 153004 (2007)

    Article  Google Scholar 

  34. Myöhänen, P., Stan, A., Stefanucci, G., van Leeuwen, R.: Kadanoff–Baym approach to quantum transport through interacting nanoscale systems: from the transient to the steady-state regime. Phys. Rev. B 80(11), 115107 (2009)

    Article  Google Scholar 

  35. Kashcheyevs, V., Aharony, A., Entin-Wohlman, O.: Applicability of the equations-of-motion technique for quantum dots. Phys. Rev. B 73(12), 125338 (2006)

    Article  Google Scholar 

  36. Levy, T.J., Rabani, E.: Symmetry breaking and restoration using the equation-of-motion technique for nonequilibrium quantum impurity models. J. Phys. Condens. Matter 25(11), 115302 (2013)

    Article  Google Scholar 

  37. Cini, M.: Time-dependent approach to electron transport through junctions: general theory and simple applications. Phys. Rev. B 22(12), 5887 (1980)

    Article  Google Scholar 

  38. Stefanucci, G., Almbladh, C.O.: Time-dependent partition-free approach in resonant tunneling systems. Phys. Rev. B 69(19), 195318 (2004)

    Article  Google Scholar 

  39. Stefanucci, G., Perfetto, E., Cini, M.: Ultrafast manipulation of electron spins in a double quantum dot device: a real-time numerical and analytical study. Phys. Rev. B 78(7), 075425 (2008)

    Article  Google Scholar 

  40. Stefanucci, G., Perfetto, E., Cini, M.: Time-dependent quantum transport with superconducting leads: a discrete-basis Kohn–Sham formulation and propagation scheme. Phys. Rev. B 81(11), 115446 (2010)

    Article  Google Scholar 

  41. Perfetto, E., Stefanucci, G., Cini, M.: Spin-flip scattering in time-dependent transport through a quantum dot: enhanced spin-current and inverse tunneling magnetoresistance. Phys. Rev. B 78(15), 155301 (2008)

    Article  Google Scholar 

  42. Perfetto, E., Stefanucci, G., Cini, M.: Equilibrium and time-dependent Josephson current in one-dimensional superconducting junctions. Phys. Rev. B 80(20), 205408 (2009)

    Article  Google Scholar 

  43. Perfetto, E., Stefanucci, G., Cini, M.: Time-dependent transport in graphene nanoribbons. Phys. Rev. B 82(3), 035446 (2010)

    Article  Google Scholar 

  44. Tuovinen, R., Perfetto, E., Stefanucci, G., van Leeuwen, R.: Time-dependent Landauer–Büttiker formula: application to transient dynamics in graphene nanoribbons. Phys. Rev. B 89(8), 085131 (2014)

    Article  Google Scholar 

  45. Tuovinen, R., Van Leeuwen, R., Perfetto, E., Stefanucci, G.: Time-dependent Landauer–Büttiker formula for transient dynamics. J. Phys. 427, 012014 (2013)

    Google Scholar 

  46. Latini, S., Perfetto, E., Uimonen, A.M., van Leeuwen, R., Stefanucci, G.: Charge dynamics in molecular junctions: nonequilibrium Green’s function approach made fast. Phys. Rev. B 89(7), 075306 (2014)

  47. Dhar, A., Sen, D.: Nonequilibrium Green’s function formalism and the problem of bound states. Phys. Rev. B 73(8), 085119–085119 (2006)

    Article  Google Scholar 

  48. Stefanucci, G.: Bound states in ab initio approaches to quantum transport: a time-dependent formulation. Phys. Rev. B 75(19), 195115 (2007)

    Article  Google Scholar 

  49. Khosravi, E., Kurth, S., Stefanucci, G., Gross, E.K.U.: The role of bound states in time-dependent quantum transport. Appl. Phys. A 93(2), 355–364 (2008)

    Article  Google Scholar 

  50. Khosravi, E., Stefanucci, G., Kurth, S., Gross, E.K.U.: Bound states in time-dependent quantum transport: oscillations and memory effects in current and density. Phys. Chem. Chem. Phys. 11(22), 4535–4538 (2009)

    Article  Google Scholar 

  51. Koch, J., von Oppen, F., Andreev, A.V.: Theory of the Franck–Condon blockade regime. Phys. Rev. B 74(20), 205438 (2006)

    Article  Google Scholar 

  52. Arrachea, L., Bode, N., von Oppen, F.: Vibrational cooling and thermoelectric response of nanoelectromechanical systems. Phys. Rev. B 90(12), 125450 (2014)

    Article  Google Scholar 

  53. Borda, L., Vladr, K., Zawadowski, A.: Theory of a resonant level coupled to several conduction-electron channels in equilibrium and out of equilibrium. Phys. Rev. B 70(12), 125107 (2007)

    Article  Google Scholar 

  54. Goldstein, M., Berkovits, R., Gefen, Y.: Population switching and charge sensing in quantum dots: a case for a quantum phase transition. Phys. Rev. Lett. 104(22), 226805 (2010)

    Article  Google Scholar 

  55. Atala, M., Aidelsburger, M., Lohse, M., Barreiro, J.T., Paredes, B., Bloch, I.: Observation of the Meissner effect with ultracold atoms in bosonic ladders. arXiv:1402.0819 (2014)

Download references

Acknowledgments

We acknowledge funding by MIUR FIRB Grant No. RBFR12SW0J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Perfetto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perfetto, E., Stefanucci, G. Transient dynamics in the Anderson–Holstein model with interfacial screening. J Comput Electron 14, 352–359 (2015). https://doi.org/10.1007/s10825-015-0662-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0662-8

Keywords

Navigation