Skip to main content
Log in

Monte Carlo modelling of noise in advanced III–V HEMTs

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

One of the main objectives of modern Microelectronics is the fabrication of devices with increased cutoff frequency and decreased level of noise. At this moment, the best devices for high-frequency, low-noise behavior are High electron mobility transistors (HEMTs) based on InGaAs and InAs channels. In this work, a complete analysis of ultra-short-gate HEMTs has been carried out by using a semiclassical Monte Carlo simulator, paying special attention to the noise performance. The validity of the model has been checked through the comparison of the simulated results with static, dynamic and noise measurements in real HEMTs. In order to reproduce the experimental results, we have included in the model some important real effects such as degeneracy, surface charges, presence of dielectrics and contact parasitics. The cryogenic performance of the HEMTs has also been analyzed. The influence of the parasitic resistances, width of the devices, value of the \(\delta \)-doping and recess length has been analyzed when scaling down the gate length of the transistors to 50 nm aiming at achieving higher cutoff frequencies and better noise performance. The important effect of the impact ionization mechanisms and the consequent kink effect on the noise in both InGaAs and InAs based HEMTs have also been studied. Finally the advantages of the use of a double gate topology are quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gonzalez, G.: Microwave Transistor Amplifiers, Analysis and Design. Prentice-Hall, Upper Saddle River (1997)

    Google Scholar 

  2. Cappy, A.: Noise modelling and measurement techniques. IEEE Trans. Microwave Theory Tech. 36, 1 (1988)

    Article  Google Scholar 

  3. Malmkvist, M., Lefebvre, E., Borg, M., Desplanque, L., Wallart, X., Dambrine, G., Bollaert, S., Grahn, J.: Electrical characterization and small-signal modeling of InAs/AlSb HEMTs for low-noise and high-frequency applications. IEEE Trans. Microw. Theory Tech. 56, 2685–2691 (2008)

    Article  Google Scholar 

  4. Moschetti, G., Wadefalk, N., Nilsson, P.Å., Roelens, Y., Noudeviwa, A., Desplanque, L., Wallart, X., Danneville, F., Dambrine, G., Bollaert, S., Grahn, J.: InAs/AlSb HEMTs for cryogenic LNAs at ultra-low power dissipation. Solid-State Electron. 64, 47–53 (2011)

  5. Lai, R., Mei, X. B., Deal, W. R., Yoshida, W., Kim, Y. M., Liu, P. H., Lee, J., Uyeda, J., Radisic, V., Lange, M., Gaier, T., Samoska, L., Fung, A.: Sub 50 nm InP HEMT device with f\(_{max}\) greater than 1 THz. In: Proceedings of the IEEE IEDM Conference of Dig., pp. 609–611. IEEE (2007)

  6. Chang, E., Kuo, C., Hsu, H., Chiang, C.Y., Miyamoto, Y.: InAs thin-channel high-electron-mobility transistors with very high current-gain cutoff frequency for emerging submillimeter-wave applications. Appl. Phys. Express 6, 3 (2013)

    Google Scholar 

  7. Kim, D.-H., del Alamo, J.A.: 30 nm InAs pseudomorphic HEMTs on an InP substrate with a current-gain cutoff frequency of 628 GHz. IEEE Electron Device Lett. 29(8), 830–833 (2008)

    Article  Google Scholar 

  8. Schleeh, J., Rodilla, H., Wadefalk, N., Nilsson, P.Å., Grahn, J.: Cryogenic noise performance of InGaAs/InAlAs HEMTs grown on InP and GaAs substrate. Solid-State Electron. 91, 74 (2014)

    Article  Google Scholar 

  9. Gaier, T., Samoska, L., Fung, A., Deal, W.R., Radisic, V., Mei, X.B., Yoshida, W., Liu, P.H., Uyeda, J., Barsky, M., Lai, R.: Measurement of a 270 GHz low noise amplifier with 7.5 dB noise figure. IEEE Microw. Wireless Compon. Lett. 17(7), 546–548 (2007)

    Article  Google Scholar 

  10. Deal, W.R., Mei, X.B., Leong, K., Radisic, V., Sarkozy, S., Gorospe, B., Lee, J., Liu, P.H., Yoshida, W., Zhou, J., Lange, M., Lai, R.: Terahertz monolithic integrated circuits using InP high electron mobility transistors. IEEE Trans. Terahertz Sci. Technol. 1, 25–32 (2011)

    Article  Google Scholar 

  11. Tessmann, A., Leuther, A., Massler, H., Seelmann-Eggebert, M.: A high gain 600 GHz amplifier TMIC using 35 nm metamorphic HEMT technology. In: Proceedings of the IEEE Compound Semiconductor Integrated Circuit Symposium, CSICS 2012, pp. 14–17. IEEE (2012)

  12. Murti, M.R., Laskar, J., Nuttinck, S., Yoo, S., Raghavan, A., Bergman, J.I., Bautista, J., Lai, R., Grundbacher, R., Barsky, M., Chin, P., Liu, P.H.: Temperature-dependent small-signal and noise parameter measurements and modeling on InP HEMTs. IEEE Trans. Microw. Theory Tech. 48, 2579 (2000)

    Article  Google Scholar 

  13. Rodilla, H., Schleeh, J., Nilsson, P.Å., Wadefalk, N., Mateos, J., Grahn, J.: Cryogenic performance of low-noise InP HEMTs: a Monte Carlo study. IEEE Trans. Electr. Devices 60(5), 1625–1631 (2013)

    Article  Google Scholar 

  14. Somerville, M.H., Ernst, A., del Alamo, J.A.: A physical model for the kink effect in InAlAs/InGaAs HEMTs. IEEE Trans. Electron Devices 47, 922–930 (2000)

    Article  Google Scholar 

  15. Vasallo, B.G., Mateos, J., Pardo, D., González, T.: Monte Carlo study of the kink effect in short-channel InAlAs/InGaAs high electron mobility transistors. J. Appl. Phys. 94, 4096–4101 (2003)

    Article  Google Scholar 

  16. Kalna, K., Asenov, A.: Role of multiple delta doping in PHEMTs scaled to sub-100 nm dimensions. Solid-State Electron. 48, 1223–1232 (2004)

    Article  Google Scholar 

  17. Vasallo, B.G., Mateos, J., Pardo, D., González, T.: Kink-effect related noise in short-channel InAlAs/InGaAs high electron mobility transistors. J. Appl. Phys. 95, 8271–8274 (2004)

    Article  Google Scholar 

  18. Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation. Springer, Vienna (1989)

    Book  Google Scholar 

  19. Mateos, J., Pardo, D., González, T., Hoel, V., Cappy, A.: Monte Carlo simulator for the design optimization of low-noise HEMTs. IEEE Trans. Electron. Dev. 47, 1950–1956 (2000)

    Article  Google Scholar 

  20. Mateos, J., González, T., Pardo, D., Bollaert, S., Parenty, T., Cappy, A.: Design optimization of AlInAs-GaInAs HEMTs for high-frequency applications. IEEE Trans. Electron Devices 51(4), 521–528 (2004)

    Article  Google Scholar 

  21. Mateos, J., González, T., Pardo, D., Bollaert, S., Parenty, T., Cappy, A.: Design optimization of AlInAs-GaInAs HEMTs for low-noise applications. IEEE Trans. Electron Devices 51(8), 1228–1233 (2004)

    Article  Google Scholar 

  22. Fischetti, M.V., Laux, S.E.: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38, 9721 (1988)

    Article  Google Scholar 

  23. Mateos, J., González, T., Pardo, D., Hoel, V., Cappy, A.: Improved Monte Carlo algorithm for the simulation of \(\delta \)-doped AlInAs/GaInAs HEMTs. IEEE Trans. Electron Devices 47, 250 (2000)

    Article  Google Scholar 

  24. Islam, A., Kalna, K.: Monte Carlo simulations of mobility in doped GaAs using self-consistent Fermi–Dirac statistics. Semicond. Sci. Technol., 26, 055007 (9 pp) (2011)

  25. Rodilla, H., González, T., Pardo, D., Mateos, J.: High-Mobility Heterostructures Based on InAs and InSb: a Monte Carlo study. J. Appl. Phys. 105, 113705 (6 pp), (2009)

  26. González, T., Pardo, D.: Physical models of ohmic contact for Monte Carlo device simulation. Solid-State Electron. 39, 555 (1996)

    Article  Google Scholar 

  27. Jensen, G.U., Lund, B., Fjeldly, T.A., Shur, M.: Monte Carlo simulation of short-channel heterostructure field-effect transistors. IEEE Trans. Electron Devices 38, 840 (1991)

    Article  Google Scholar 

  28. Mateos, J., González, T., Pardo, D., Tadyszak, P., Danneville, F., Cappy, A.: Noise and transit time in ungated FET structures. IEEE Trans. Electron Devices 44, 2128 (1997)

    Article  Google Scholar 

  29. Mateos, J., González, T., Pardo, D., Tadyszak, P., Danneville, F., Cappy, A.: Noise analysis of 0.1 \(\mu \)m gate MESFETs and HEMTs. Solid-State Electron. 42, 79 (1998)

    Article  Google Scholar 

  30. Babiker, S., Asenov, A., Cameron, N., Beaumont, S.P., Barker, J.R.: Complete Monte Carlo RF analysis of “real” short channel compound FETs. IEEE Trans. Electron Devices 45, 1644 (1998)

    Article  Google Scholar 

  31. Mateos, J., González, T., Pardo, D., Tadyszak, P., Danneville, F., Cappy, A.: Numerical and experimental analysis of static characteristics and noise in ungated recessed MESFET structures. Solid-State Electron. 39, 1629 (1996)

    Article  Google Scholar 

  32. Fischetti, M.V.: Monte Carlo simulation of transport in tech-nologically significant semiconductors of the diamond and zinc-blende structures-part I: homogeneous transport. IEEE Trans. Electron Devices 38, 634–649 (1991)

    Article  Google Scholar 

  33. Pearsall, T.P.: Impact ionization rates for electrons and holes in Ga0.47In0.53As. Appl. Phys. Lett. 36, 218–220 (1980)

    Article  Google Scholar 

  34. Osaka, F., Mikawa, T., Kaneda, T.: Impact ionization coefficients of electrons and holes in (100)-oriented Ga\(_{1-x}\)In\(_{x}\)As\(_{y}\)P\(_{1-y}\). IEEE J. Quantum Electron. 21, 1326–1338 (1985)

    Article  Google Scholar 

  35. Babiker, S., Asenov, A., Cameron, N., Beaumont, S.P.: Simple approach to include external resistances in the Monte Carlo simulation of MESFETs and HEMTs. IEEE Trans. Electron Devices 43, 2032 (1996)

    Article  Google Scholar 

  36. Dambrine, G., Cappy, A., Heliodore, F., Playez, E.: A new method for determining the FET small-signal equivalent circuit. IEEE Trans. Microw. Theory Tech. 32, 1151 (1988)

    Article  Google Scholar 

  37. González, T., Pardo, D.: Monte Carlo determination of the intrinsic small-signal equivalent circuit of MESFETs. IEEE Trans. Electron Devices 42, 605 (1995)

  38. González, T., Pardo, D., Varani, L., Reggiani, L.: Monte Carlo analysis of the behavior and spatial origin of electronic noise in GaAs MESFETs. IEEE Trans. Electron Devices 42, 991 (1995)

    Article  Google Scholar 

  39. Pucel, P.A., Haus, H.A., Statz, H.: Signal and noise properties of gallium arsenide field effect transistors. Adv. Electron. Electron Phys. 38, 195–265 (1974)

    Article  Google Scholar 

  40. Klepser, B.H., Bergamaschi, C., Schefer, M., Diskus, C.G., Patrick, W., Bächtold, W.: Analytical bias dependent noise model for InP HEMTs. IEEE Trans. Electron Devices 42, 1882 (1995)

    Article  Google Scholar 

  41. Danneville, F., Happy, H., Dambrine, G., Belquin, J.M., Cappy, A.: Microscopic noise modeling and macroscopic noise models: how good a connection? IEEE Trans. Electron Devices 41, 779 (1994)

  42. Rothe, H., Dahlke, W.: Theory of noisy fourpoles. In: Proceedings of the IRE, vol. 44, pp. 811–818 (1956)

  43. Greaves, S.D., Unwin, R.T.: Accurate noise characterization of short gate length GaAs MESFETs and HEMTs for use in low-noise optical receivers. Microw. Opt. Tech. Lett. 6, 60 (1993)

    Article  Google Scholar 

  44. Fukui, H.: Design of microwave GaAs MESFETs for broadband, low-noise amplifiers. IEEE Trans. Microw. Theory Tech. MTT–27, 643–650 (1979)

    Article  Google Scholar 

  45. Pospieszalski, M.: Modeling of noise parameters of MESFETs and MODFETs and their frequency and temperature dependence. IEEE Trans. Microw. Theory Tech. MTT–37(9), 1340–1350 (1989)

    Article  Google Scholar 

  46. Mateos, J., González, T., Pardo, D., Hoel, V., Cappy, A.: Effect of the T-gate on the performance of recessed HEMTs. A Monte Carlo analysis. Semicond. Sci. Technol. 14, 864 (1999)

    Article  Google Scholar 

  47. Pospieszalski, M.W.: Extremely low-noise amplification with cryogenic FETs and HFETs: 1970–2004. IEEE Microw. Mag. 6(3), 62–75 (2005)

    Article  Google Scholar 

  48. Endoh, A., Watanabe, I., Shinohara, K., Awano1z, Y., Hikosaka, K., Matsui, T., Hiyamizu, S., Mimura, T.: Monte Carlo simulations of electron transport in In0.52Al0.48As/In0.75Ga0.25As high electron mobility transistors at 300 and 16 K. Jpn. J. Appl. Phys. 49, 114301–1–114301–5 (2010)

  49. Malmkvist, M., Wang, S., Grahn, J.: Epitaxial optimization of 130-nm gate-length InGaAs/InAlAs/InP HEMTs for high-frequency applications. IEEE Trans. Electron Devices 55, 268–275 (2008)

    Article  Google Scholar 

  50. Vasallo, B.G., Rodilla, H., González, T., Moschetti, G., Grahn, J., Mateos, J.: Monte Carlo study of kink effect in isolated-gate InAs/AlSb high electron mobility transistors. J. Appl. Phys. 108, 094505–1–094505–5 (2010)

    Article  Google Scholar 

  51. Vasallo, B.G., Rodilla, H., González, T., Moschetti, G., Grahn, J., Mateos, J.: Kink effect and noise performance in isolated-gate InAs/AlSb high electron mobility transistors. Semicond. Sci. Technol. 27, 065018-1–065018-5 (2012)

  52. Wichmann, N., Duszynski, I., Wallart, X., Bollaert, S., Cappy, A.: Fabrication and characterization of 100-nm \(\text{ In }_{0.53}\text{ Al }_{0.47}\text{ As-In }_{0.52}\text{ Ga }_{0.48}\)As Double-Gate HEMTs with two separate gate controls. IEEE Electron. Device Lett. 26, 601–603 (2005)

    Article  Google Scholar 

  53. Vasallo, B.G., González, T., Pardo, D., Mateos, J., Wichmann, N., Bollaert, S., Roelens, Y., Cappy, A.: Comparison between the dynamic performance of double- and single-gate AlInAs/InGaAs HEMTs. IEEE Trans. Electron Devices 54, 2815–2822 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors dedicate this paper to the memory of our beloved and respected Prof. Daniel Pardo, recently deceased, whose contribution was of key importance not only for the development of the models described here but also for his enthusiastic everyday efforts to push us to improve further. This work was performed in close collaboration with A. Cappy, S. Bollaert, V. Hoel, N. Wichtmann, X. Wallart, Y. Roelens, T. Parenty and F. Danneville (IEMN, France), J. Grahn, J. Schleeh, G. Moschetti, P.Å. Nilsson and N. Wadefalk (Chalmers University of Technology, Sweden) who fabricated the devices, provided the experimental data and contributed to the interpretation of the results. It was supported partially by the Spanish Ministerio de Economía y Competitividad through Project TEC2013-41640-R and by the Consejería de Educación de la Junta de Castilla y León through Project SA052U13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mateos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateos, J., Rodilla, H., Vasallo, B.G. et al. Monte Carlo modelling of noise in advanced III–V HEMTs. J Comput Electron 14, 72–86 (2015). https://doi.org/10.1007/s10825-014-0653-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0653-1

Keywords

Navigation