Skip to main content
Log in

Textured window with DLAR coating design for an effective minimization of electrical and optical losses in an efficient III–V solar cell

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Performances of solar cells with different window materials and structures have been analysed and compared. Four different materials with varied thickness have been used for comparison. An efficient thin textured window layer design with double layer anti reflection coating for III–V solar cell is then proposed. The optimum window is obtained with 18 nm InAlP material and further optimized with four sided textured surface coated with 125 nm double antireflective layer of \(\hbox {Al}_{2}\hbox {O}_{3}\)\(\hbox {TiO}_{2}\). Our design shows minimum reflection and absorption loss in the wavelength range of 200–650 nm and better transmission for rest of the higher wavelength when illuminated with AM1.5G spectrum. Performance variation with different doping concentration on this layer is also investigated. At about \(1\times 10^{17}\) \(\hbox {cm}^{-3}\) carrier concentration, EQE of the cell is found to be well above 95 %. The model has been validated with experimental data available from various recent literatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Dzhafarov, T.: Silicon solar cells with nanoporous silicon layer. In: Professor Morales-Acevedo, A. (ed.) Solar Cells-Research and Application Perspectives, p. 42. InTech Open Science, Croatia, Europe (2013)

  2. Gupta, S., Srivastaya, M., Gupta, A.: Mathematical formulation comparative analysis of losses in solar cells. http://www.tutorialspoint.com/white-papers. Accessed 12 May 2012

  3. Garnett, E., Yang, P.: Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082 (2010)

    Article  Google Scholar 

  4. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 41). Prog. Photovolt. 21, 1 (2013)

    Article  Google Scholar 

  5. Aiken, D.J.: High performance antireflection coatings for broadband multi-junction solar cells. Sol. Energy Mater. Sol. Cells 64, 393 (2000)

    Article  Google Scholar 

  6. Hans Joachim Moller: Semiconductor for Solar cells. Artech House, Boston (1993)

    Google Scholar 

  7. SOPRA.: ”N & K Database”. http://www.sopra-sa.com. Accessed 15 June 2010

  8. Green, M.: High Efficiency Silicon Solar Cells. Trans Tech Publications, Dürnten (1987)

    Google Scholar 

  9. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001)

    Article  Google Scholar 

  10. SILVACO Data Systems Inc.: Silvaco ATLAS User’s Manual (2009)

  11. Olson, J.M., Friedman, D.J., Kurtz, S.: Handbook of Photovoltaic Science and Engineering, uque, A., Hegedus, S. (eds.), p. 387. Wiley, Chichester (2003)

  12. King, R.R., et al.: High-efficiency space and terrestrial multijunction solar cells through bandgap control in cell structures. In: Proceedings of the 29th IEEE Photovoltaic Specialists Conference (New Orleans), Piscataway, p. 776. IEEE (2002)

  13. Hashizume, T.: Surface Fermi-level position and gap state distribution of InGaP surface grown by metalorganic vapor-phase epitaxy Appl. Phys. Lett. 81, 2382 (2002)

    MathSciNet  Google Scholar 

  14. Karam, N.H., et al.: Recent developments in high-efficiency Ga0.5In0.5P/GaAs/Ge dual- and triple-junction solar cells: steps to next-generation PV cells. Sol. Energy Mater. Sol. Cells 66, 453 (2001)

  15. Law, D.C., Fetzer, C.M., King, R.R., Colter, P.C., Yoon, H., Isshiki, T.D., Edmondson, K,M., Haddad, M., Karam, N.H.: Multijunction solar cells with subcell materials highly lattice-mismatched to germanium. In: Proceedings of the 31st IEEE Photovoltaic Specialists Conference (Orlando), Piscataway, p. 575. IEEE (2005)

  16. Jackson, J.D.: Classical Electrodynamics, 2nd edn. John Wiley, New York (1975). ISBN: 047143132X

    MATH  Google Scholar 

  17. Jahanshah, F., Sopian, K., Zaidi, S.H., Othman, M.Y., Amin, N., Asim, N.: Modeling the effect of P-N junction depth on the output of planer and rectangular textured solar cells. Am. J. Appl. Sci. 6(4), 667–671 (2009)

    Article  Google Scholar 

  18. Zaidi, S.H., Marquadt, R., Minhas, B., Tringe, J.W.: Deeply etched grating structures for enhanced absorption in thin C-Si solar cells. In: Proceeding of the 20th Conference on Photovoltaic Specialists, May 19–24, pp. 1290–1293. IEEE Computer Society, Washington DC (2002)

  19. Nelson, J.: The Physics of Solar Cells, 1st edn, p. 450. Imperial College Press, London (2003). ISBN 13: 9781860943492

    Book  Google Scholar 

  20. Neamen, D.A.: Semiconductor Physics and Devices: Basic Principles, 1st edn, p. 746. IRWIN, Boston (1992). ISBN 10 025608405X

    Google Scholar 

  21. Singh, K.J., Sarkar, S.K.: Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modeling usingoptimized InAlGaP BSF layers. Opt. Quantum Electron. 43, 1–21 (2012)

    Article  Google Scholar 

  22. Sze, S.M.: Physics of Semiconductor Devices, 2nd edn, pp. 811–812. Wiley, New York (1981)

    Google Scholar 

  23. Aspnes, D.E., Kelso, S.M., Logan, R.A., Bhat, R.: Optical properties of AlxGa1-xAs alloy of same band-gap. J. Appl. Phys. 60(2), 754–767 (1986)

    Article  Google Scholar 

  24. Yoshikawa, A., Kasai’, H.: Optimum design for window layer thickness of GaAIAs-GaAs heteroface solar cell regarding the effect of reflection loss. J. Appl. Phys. 52(6), 4345–4347 (1981)

    Article  Google Scholar 

  25. Pla, J., Barrera, M., Rubinelli, F.: The influence of the InGaP window layer on the optical and electrical performance of GaAs solar cells. Semicond. Sci. Technol. 22, 1122–1130 (2007)

    Article  Google Scholar 

  26. Wojtczuk, S.J., Vernon, S.M., Sanfacon, M.M.: Comparison of windows for P-on-N InGaP solar cells. In: Proceedings of the Photovoltaic Specialists Conference, 1993, Conference Record of the Twenty Third IEEE (1993)

  27. Bouhafs, D., Moussi, A., Chikouche, A., Ruiz, J.M.: Design and simulation of antireflection coating systems for optoelectronic devices: application to silicon solar cells. Solar Energy Mater. Solar Cells 52, 79–93 (1998)

    Article  Google Scholar 

  28. Richards, B.S.: Single-material TiO2 double-layer antireflection coatings. Solar Energy Mater. Solar Cells 79, 369–390 (2003)

    Article  Google Scholar 

  29. Sttehlke, S., Bastide, S., Guillet, J., Levy-Clement, C.: Design of porous silicon antireflection coatings for silicon solar cells. Mat. Sci. Eng. B 69, 81–86 (2000)

    Article  Google Scholar 

  30. Wright, D.N., Marstein, E.S., Holt, A.: Double layer anti-reflective coatings for silicon solar cells. In: Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Orlando, FL, pp. 1237–1240.IEEE (2005)

  31. Redfield, D.: Method for evaluation of antireflection coatings. Solar Cells 3, 27–33 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khomdram Jolson Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K.J., Singh, N.B. & Sarkar, S.K. Textured window with DLAR coating design for an effective minimization of electrical and optical losses in an efficient III–V solar cell. J Comput Electron 14, 288–299 (2015). https://doi.org/10.1007/s10825-014-0652-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0652-2

Keywords

Navigation