Skip to main content
Log in

Weighted average \(Q\)-factor calculation for single port filter-antenna measurement

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Filter-antenna has many advantages like no need of match network, low insertion loss, ease of design, low cost and light weight. However, practical implementation of filter-antenna requires a precise value of \(Q\)-factor. Filter-antenna is a single device, handling radiating and filtering properties simultaneously, making it difficult to extract \(Q\)-factor for such device. Moreover, filter-antenna has single port and designer is required to calculate \(Q\)-factor from single port. As reported in literature that the available methods for calculation of \(Q\)-factor from single port seem inaccurate. This paper presents a novel \(Q\)-factor calculation method that outperforms existing methods for almost every case of filter-antenna. Experimental results verify the superior performance of proposed method relative existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Troubat, M., Bila, S., Thevenot, M., Baillargeat, D., Monediere, T., Verdeyme, S., Jecko, B.: Mutual synthesis of combined microwave circuits applied to the design of a filter-antenna subsystem. IEEE Trans. Microw. Theory Tech. 55(6), 1182–1189 (2007)

    Article  Google Scholar 

  2. Zuo, J., Chen, X., Han, G., Li, L., Zhang, W.: An integrated approach to RF antenna-filter co-design. IEEE Antennas Wirel. Propag. Lett. 8, 141–144 (2009)

    Article  Google Scholar 

  3. Nova, O.A., Bohorquez, J.C., Pena, N.M., Bridges, G.E., Shafai, L., Shafai, C.: Filter-antenna module using substrate integrated waveguide cavities. IEEE Antennas Wirel. Propag. Lett. 10, 59–62 (2011)

    Article  Google Scholar 

  4. Aitken, J.E.: Swept-frequency microwave \(Q\)-factor measurement. Proc. IEE 123(9), 855–862 (1976)

    Google Scholar 

  5. Kwok, R.S., Liang, J.: Characterization of high-\(Q\) Resonators for microwave-filter applications. IEEE Trans. Microw. Theory Tech. 47(1), 111–114 (1999)

    Article  Google Scholar 

  6. Zakharov, A.V., Shelkovnikov, B.N.: The Q factor of resonators containing transmission line sections and several capacitors. J. Commun. Technol. Electron. 58(4), 378–383 (2013)

    Article  Google Scholar 

  7. Alekseev, S.G., Mansfel’d, G.D.: A simple procedure for measuring the Q factor of and attenuation in acoustic-resonators. J. Commun. Technol. Electron. 53(1), 113–117 (2008)

    Article  Google Scholar 

  8. Coakley, K.J., Splett, J.D., Janezic, M.D.: Estimation of \(Q\)-factors and resonant frequencies. IEEE Trans. Microw. Theory Tech. 51(3), 862–868 (2003)

    Article  Google Scholar 

  9. Kajfez, D.: Linear fractional curve fitting for measurement of high \(Q\) factors. IEEE Trans. Microw. Theory Tech. 42(7), 1149–1153 (1994)

    Article  Google Scholar 

  10. Petersan, P.J., Anlagea, S.M.: Measurement of resonant frequency and quality factor of microwave resonators: comparison of methods. J. Appl. Phys. 84(6), 3392–3402 (1998)

    Article  Google Scholar 

  11. Bray, J.R., Roy, L.: Measuring the unloaded, loaded, and external quality factors of one- and two-port resonators using scattering-parameter magnitudes at fractional power levels. IEE Proc. Microw. Antennas Propag. 151(4), 345–350 (2004)

    Article  Google Scholar 

  12. Yaghjian, A.D., Best, S.R.: Impedance, bandwidth, and \(Q\) of antennas. IEEE Trans. Antennas Propag. 53(4), 1298–1324 (Apr. 2005)

  13. Mavridis, G.A., Anagnostou, D.E., Christodoulou, C.G., Chryssomallis, M.T.: Quality factor \(Q\) of a miniaturized meander microstrip patch antenna. Antennas and Propagation Society International Symposium, pp. 1–4 (Jul. 2008)

  14. Audet, J.: \(Q\) Calculations of L–C circuits and transmission lines: a unified approach. The American Radio Relay League (ARRL), pp. 43–51 (Sept. 2006)

  15. Audet, J.: \(Q\) factor measurements on L–C circuits. The American Radio Relay League (ARRL), pp. 7–11 (2012)

  16. Alimgeer, K.S., Khan, S.A., Qamar, Z., Abbas, S.M.: Planar monopole UWB antenna with 5GHz dual notched band characteristics. Przeglad Elektrotech. Electr. Rev. 6, 295–299 (2012)

    Google Scholar 

  17. Alimgeer, K.S., Khan, S.A., Qamar, Z., Abbas, S.M.: Planar monopole stair case antenna for Ultra-wide band. Przeglad Elektrotech. Electr. Rev. 89(1), 227–229 (2013)

    Google Scholar 

  18. Lancaster, M.J.: Passive Microwave Device Applications of High-Temperature Superconductors. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  19. Alimgeer, K.S., Khan, S.A., Malik, S.A.: Improved Q-factor calculations for single port filter-antenna measurement. Wirel. Pers. Commun. 72(2), 1351–1359 (2013)

    Article  Google Scholar 

  20. Wu, Z., Davis, L.E.: Automation-oriented techniques for quality factor measurements of high-Tc superconducting resonators. IEE Proc. Microw. Antennas Propag. 141(6), 527–530 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurram Saleem Alimgeer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alimgeer, K.S., Khan, S.A. Weighted average \(Q\)-factor calculation for single port filter-antenna measurement. J Comput Electron 13, 894–899 (2014). https://doi.org/10.1007/s10825-014-0606-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0606-8

Keywords

Navigation