Skip to main content
Log in

The AI-driven Drug Design (AIDD) platform: an interactive multi-parameter optimization system integrating molecular evolution with physiologically based pharmacokinetic simulations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Computer-aided drug design has advanced rapidly in recent years, and multiple instances of in silico designed molecules advancing to the clinic have demonstrated the contribution of this field to medicine. Properly designed and implemented platforms can drastically reduce drug development timelines and costs. While such efforts were initially focused primarily on target affinity/activity, it is now appreciated that other parameters are equally important in the successful development of a drug and its progression to the clinic, including pharmacokinetic properties as well as absorption, distribution, metabolic, excretion and toxicological (ADMET) properties. In the last decade, several programs have been developed that incorporate these properties into the drug design and optimization process and to varying degrees, allowing for multi-parameter optimization. Here, we introduce the Artificial Intelligence-driven Drug Design (AIDD) platform, which automates the drug design process by integrating high-throughput physiologically-based pharmacokinetic simulations (powered by GastroPlus) and ADMET predictions (powered by ADMET Predictor) with an advanced evolutionary algorithm that is quite different than current generative models. AIDD uses these and other estimates in iteratively performing multi-objective optimizations to produce novel molecules that are active and lead-like. Here we describe the AIDD workflow and details of the methodologies involved therein. We use a dataset of triazolopyrimidine inhibitors of the dihydroorotate dehydrogenase from Plasmodium falciparum to illustrate how AIDD generates novel sets of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All of the data upon which the work described here is based have been drawn from the open literature available. The specific datasets need to used are provided in the Supplemental Information.

Code availability

ADMET Predictor® and GastroPlus® are commercially available from Simulations Plus, Inc., Lancaster CA 93534 (https://www.simulations-plus.com). Access for non-commercial use is available through the company’s academic collaborators program.

References

  1. Bohacek R, Mcmartin C, Glunz P, Rich DH (1999) Growmol, a de novo computer program, and its application to thermolysin and pepsin: results of the design and synthesis of a novel inhibitor. In: Truhlar DG, Howe WJ, Hopfinger AJ, Blaney J, Dammkoehler RA (eds) Rational drug design. The IMA volumes in mathematics and its applications. Springer, New York, pp 103–114. https://doi.org/10.1007/978-1-4612-1480-9_9

    Chapter  Google Scholar 

  2. Eisen MB, Wiley DC, Karplus M, Hubbard RE (1994) HOOK: a program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Proteins 19(3):199–221. https://doi.org/10.1002/prot.340190305

    Article  CAS  PubMed  Google Scholar 

  3. Moon JB, Howe WJ (1991) Computer design of bioactive molecules: a method for receptor-based de novo ligand design. Proteins Struct Funct Bioinform 11(4):314–328. https://doi.org/10.1002/prot.340110409

    Article  CAS  Google Scholar 

  4. Gillet V, Johnson AP, Mata P, Sike S, Williams P (1993) SPROUT: a program for structure generation. J Comput Aided Mol Des 7(2):127–153. https://doi.org/10.1007/BF00126441

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Böhm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6(1):61–78. https://doi.org/10.1007/BF00124387

    Article  ADS  PubMed  Google Scholar 

  6. Besnard J et al (2012) Automated design of ligands to polypharmacological profiles. Nature 492(7428):7428. https://doi.org/10.1038/nature11691

    Article  CAS  Google Scholar 

  7. Martín-Bautista MJ, Vila M-A (1998) Applying genetic algorithms to the feature selection problem in information retrieval. In: Andreasen T, Christiansen H, Larsen HL (eds) Flexible query answering systems. Lecture notes in computer science. Springer, Berlin, pp 272–281. https://doi.org/10.1007/BFb0056008

    Chapter  Google Scholar 

  8. Hartenfeller M, Proschak E, Schüller A, Schneider G (2008) Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization. Chem Biol Drug Des 72(1):16–26. https://doi.org/10.1111/j.1747-0285.2008.00672.x

    Article  CAS  PubMed  Google Scholar 

  9. Wang R, Gao Y, Lai L (2000) LigBuilder: a multi-purpose program for structure-based drug design. Mol Model Annu 6(7):498–516. https://doi.org/10.1007/s0089400060498

    Article  CAS  Google Scholar 

  10. Sun Y, Ewing TJA, Skillman AG, Kuntz ID (1998) CombiDOCK: Structure-based combinatorial docking and library design. J Comput Aided Mol Des 12(6):597–604. https://doi.org/10.1023/A:1008036704754

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Fechner U, Schneider G (2006) Flux (1): a virtual synthesis scheme for fragment-based de novo design. J Chem Inf Model 46(2):699–707. https://doi.org/10.1021/ci0503560

    Article  CAS  PubMed  Google Scholar 

  12. Fechner U, Schneider G (2007) Flux (2): comparison of molecular mutation and crossover operators for ligand-based de novo design. J Chem Inf Model 47(2):656–667. https://doi.org/10.1021/ci6005307

    Article  CAS  PubMed  Google Scholar 

  13. Brown N, McKay B, Gilardoni F, Gasteiger J (2004) A graph-based genetic algorithm and its application to the multiobjective evolution of median molecules. J Chem Inf Comput Sci 44(3):1079–1087. https://doi.org/10.1021/ci034290p

    Article  CAS  PubMed  Google Scholar 

  14. Wang M et al (2022) Deep learning approaches for de novo drug design: an overview. Curr Opin Struct Biol 72:135–144. https://doi.org/10.1016/j.sbi.2021.10.001

    Article  CAS  PubMed  Google Scholar 

  15. Bai Q et al (2022) Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. WIREs Comput Mol Sci 12(3):e1581. https://doi.org/10.1002/wcms.1581

    Article  CAS  Google Scholar 

  16. Brown N, Fiscato M, Segler MHS, Vaucher AC (2019) GuacaMol: benchmarking models for de novo molecular design. J Chem Inf Model 59(3):1096–1108. https://doi.org/10.1021/acs.jcim.8b00839

    Article  CAS  PubMed  Google Scholar 

  17. Bush JT et al (2020) A turing test for molecular generators. J Med Chem 63(20):11964–11971. https://doi.org/10.1021/acs.jmedchem.0c01148

    Article  CAS  PubMed  Google Scholar 

  18. Phillips MA et al (2016) A triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with improved drug-like properties for treatment and prevention of malaria. ACS Infect Dis 2(12):945–957. https://doi.org/10.1021/acsinfecdis.6b00144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Phillips MA et al (2008) Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite Plasmodium falciparum. J Med Chem 51(12):3649–3653. https://doi.org/10.1021/jm8001026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gujjar R et al (2009) Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. J Med Chem 52(7):1864–1872. https://doi.org/10.1021/jm801343r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gujjar R et al (2011) Lead optimization of aryl and aralkyl amine-based triazolopyrimidine inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with antimalarial activity in mice. J Med Chem 54(11):3935–3949. https://doi.org/10.1021/jm200265b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deng X et al (2009) Structural plasticity of malaria dihydroorotate dehydrogenase allows selective binding of diverse chemical scaffolds. J Biol Chem 284(39):26999–27009. https://doi.org/10.1074/jbc.M109.028589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deng X et al (2014) Fluorine modulates species selectivity in the triazolopyrimidine class of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors. J Med Chem 57(12):5381–5394. https://doi.org/10.1021/jm500481t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coteron JM et al (2011) Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. J Med Chem 54(15):5540–5561. https://doi.org/10.1021/jm200592f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marwaha A et al (2012) Bioisosteric transformations and permutations in the triazolopyrimidine scaffold to identify the minimum pharmacophore required for inhibitory activity against Plasmodium falciparum dihydroorotate dehydrogenase. J Med Chem 55(17):7425–7436. https://doi.org/10.1021/jm300351w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kokkonda S et al (2016) Tetrahydro-2-naphthyl and 2-Indanyl triazolopyrimidines targeting Plasmodium falciparum dihydroorotate dehydrogenase display potent and selective antimalarial activity. J Med Chem 59(11):5416–5431. https://doi.org/10.1021/acs.jmedchem.6b00275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burlingham BT, Widlanski TS (2003) An intuitive look at the relationship of Ki and IC50: a more general use for the dixon plot. J Chem Educ 80(2):214. https://doi.org/10.1021/ed080p214

    Article  CAS  Google Scholar 

  28. Clark RD et al (2020) Design and tests of prospective property predictions for novel antimalarial 2-aminopropylaminoquinolones. J Comput Aided Mol Des 34(11):1117–1132. https://doi.org/10.1007/s10822-020-00333-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh A, Minsker B, Goldberg DE (2012) Combining reliability and pareto optimality—an approach using stochastic multi-objective genetic algorithms. pp 1–10. https://doi.org/10.1061/40685(2003)93

  30. Fonseca CM, Fleming PJ (1995) An overview of evolutionary algorithms in multiobjective optimization. Evol Comput 3(1):1–16. https://doi.org/10.1162/evco.1995.3.1.1

    Article  Google Scholar 

  31. Clark RD, Abrahamian E (2009) Using a staged multi-objective optimization approach to find selective pharmacophore models. J Comput Aided Mol Des 23(11):765–771. https://doi.org/10.1007/s10822-008-9227-2

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Brown N, McKay B, Gasteiger J (2004) The de novo design of median molecules within a property range of interest. J Comput Aided Mol Des 18(12):761–771. https://doi.org/10.1007/s10822-004-6986-2

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Gillet VJ, Khatib W, Willett P, Fleming PJ, Green DVS (2002) Combinatorial library design using a multiobjective genetic algorithm. J Chem Inf Comput Sci 42(2):375–385. https://doi.org/10.1021/ci010375j

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Ye K, van Vlijmen HWT, Emmerich MTM, IJzerman AP, van Westen GJP (2021) DrugEx v2: de novo design of drug molecules by Pareto-based multi-objective reinforcement learning in polypharmacology. J. Cheminform 13(1):85. https://doi.org/10.1186/s13321-021-00561-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kruisselbrink JW, Emmerich MTM, Bäck T, Bender A, Ijzerman AP (2009) Combining aggregation with pareto optimization: a case study in evolutionary molecular design. In: Ehrgott M, Fonseca CM, Gandibleux X, Hao J-K, Sevaux M (eds) Evolutionary multi-criterion optimization. Lecture notes in computer science. Springer, Berlin, pp 453–467

    Chapter  Google Scholar 

  36. Lawless MS, Waldman M, Fraczkiewicz R, Clark RD (2016) Using cheminformatics in drug discovery. Handb Exp Pharmacol 232:139–168. https://doi.org/10.1007/164_2015_23

    Article  CAS  PubMed  Google Scholar 

  37. Clark RD, Daga PR (2019) Building a quantitative structure-property relationship (QSPR) model. Methods Mol Biol (Clifton NJ) 1939:139–159. https://doi.org/10.1007/978-1-4939-9089-4_8

    Article  CAS  Google Scholar 

  38. AmaralSilva D, Pate DW, Clark RD, Davies NM, El-Kadi AOS, Löbenberg R (2020) Phytocannabinoid drug–drug interactions and their clinical implications. Pharmacol Ther 215:107621. https://doi.org/10.1016/j.pharmthera.2020.107621

    Article  CAS  Google Scholar 

  39. Clark RD (2018) Predicting mammalian metabolism and toxicity of pesticides in silico. Pest Manag Sci 74(9):1992–2003. https://doi.org/10.1002/ps.4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1):3–25. https://doi.org/10.1016/S0169-409X(96)00423-1

    Article  CAS  Google Scholar 

  41. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

  42. Naga D, Parrott N, Ecker GF, Olivares-Morales A (2022) Evaluation of the success of high-throughput physiologically based pharmacokinetic (HT-PBPK) modeling predictions to inform early drug discovery. Mol Pharm 19(7):2203–2216. https://doi.org/10.1021/acs.molpharmaceut.2c00040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform 1(1):8. https://doi.org/10.1186/1758-2946-1-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brenk R et al (2008) Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 3(3):435–444. https://doi.org/10.1002/cmdc.200700139

    Article  CAS  PubMed  Google Scholar 

  45. Rishton GM (1997) Reactive compounds and in vitro false positives in HTS. Drug Discov Today 2(9):382–384. https://doi.org/10.1016/S1359-6446(97)01083-0

    Article  CAS  Google Scholar 

  46. Daylight Theory: SMARTS—a language for describing molecular patterns. https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html Accessed 9 June 2023

  47. Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quantifying the chemical beauty of drugs. Nat Chem 4(2):90–98. https://doi.org/10.1038/nchem.1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Daylight Theory: SMIRKS - A Reaction Transform Language. https://www.daylight.com/dayhtml/doc/theory/theory.smirks.html Accessed 9 June 2023

  49. Selecting a voting method: the case for the Borda count | SpringerLink. https://doi.org/10.1007/s10602-022-09380-y Accessed 9 June 2023

  50. Renz P, Van Rompaey D, Wegner JK, Hochreiter S, Klambauer G (2019) On failure modes in molecule generation and optimization. Drug Discov Today Technol 32–33:55–63. https://doi.org/10.1016/j.ddtec.2020.09.003

    Article  PubMed  Google Scholar 

  51. Gómez-Bombarelli R et al (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4(2):268–276

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kang S-G, Morrone JA, Weber JK, Cornell WD (2022) Analysis of training and seed bias in small molecules generated with a conditional graph-based variational autoencoder─insights for practical AI-driven molecule generation. J Chem Inf Model 62(4):801–816. https://doi.org/10.1021/acs.jcim.1c01545

    Article  CAS  PubMed  Google Scholar 

  53. Anstine DM, Isayev O (2023) Generative models as an emerging paradigm in the chemical sciences. J Am Chem Soc 145(16):8736–8750. https://doi.org/10.1021/jacs.2c13467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Handa K, Thomas MC, Kageyama M, Iijima T, Bender A (2023) On the difficulty of validating molecular generative models realistically: a case study on public and proprietary data. J Cheminform 15(1):112. https://doi.org/10.1186/s13321-023-00781-1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Eric Martin for his editorial input to this article as well as for the invaluable feedback on the program provided by him and his colleagues at Novartis.

Funding

Development of AIDD was internally funded by Simulations Plus, Inc. Access to a pre-release version of ADMET Predictor 10.4 was provided to RDC as part of Simulation Plus’ academic collaboration program.

Author information

Authors and Affiliations

Authors

Contributions

MW conceived of AIDD and was primarily responsible for its implementation. He received key programming and infrastructure support from DWM. RDC and MSL contributed application support and feedback during the program’s development. RDC conceived and carried out the TzP case study. He and JJ worked together on the analysis of the results; all authors reviewed the manuscript and provided editorial input.

Corresponding author

Correspondence to Jeremy Jones.

Ethics declarations

Conflict of interest

MSL, DSM and JJ are currently employed by Simulations Plus, Inc., and own stock in the company or options on the stock thereof. RDC and MW are former employees but still hold stock in the company. The authors declare no competing interests beyond those implicit in their employment by their respective institutions. All authors are current or former employees of Simulations Plus, Inc., which distributes the software described in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 1003 KB)

Supplementary file2 (DOCX 642 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, J., Clark, R.D., Lawless, M.S. et al. The AI-driven Drug Design (AIDD) platform: an interactive multi-parameter optimization system integrating molecular evolution with physiologically based pharmacokinetic simulations. J Comput Aided Mol Des 38, 14 (2024). https://doi.org/10.1007/s10822-024-00552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10822-024-00552-6

Keywords

Navigation