Skip to main content
Log in

Automated high throughput pKa and distribution coefficient measurements of pharmaceutical compounds for the SAMPL8 blind prediction challenge

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The goal of the Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL) challenge is to improve the accuracy of current computational models to estimate free energy of binding, deprotonation, distribution and other associated physical properties that are useful for the design of new pharmaceutical products. New experimental datasets of physicochemical properties provide opportunities for prospective evaluation of computational prediction methods. Here, aqueous pKa and a range of bi-phasic logD values for a variety of pharmaceutical compounds were determined through a streamlined automated process to be utilized in the SAMPL8 physical property challenge. The goal of this paper is to provide an in-depth review of the experimental methods utilized to create a comprehensive data set for the blind prediction challenge. The significance of this work involves the use of high throughput experimentation equipment and instrumentation to produce acid dissociation constants for twenty-three drug molecules, as well as distribution coefficients for eleven of those molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the GitHub repository, https://github.com/samplchallenges/SAMPL8. As of the time of this writing, only input data will be available, but at the close of the SAMPL8 challenge, measured values will also be released.

Abbreviations

OCTL:

Octanol

CYHL:

Cyclohexane

ETAC:

Ethyl acetate

HP:

Heptane

MEK:

Methyl ethyl ketone

TBME:

Tert butyl methyl ether

DMF:

Dimethylformamide

BR:

Britton Robinson

API:

Active pharmaceutical ingredient

References

  1. Asli N, Sergio C, Taosheng C (2013) Data analysis approaches in high throughput screening. Drug Discov. https://doi.org/10.5772/52508

    Article  Google Scholar 

  2. Coley CW, Eyke NS, Jensen KF (2020) Autonomous discovery in the chemical sciences Part I: progress. Angew Chem Int Ed Engl 59(51):22858–22893

    CAS  PubMed  Google Scholar 

  3. Rosso V, Albrecht J, Roberts F, Janey JM (2019) Uniting laboratory automation, DoE data, and modeling techniques to accelerate chemical process development. Reac Chem Eng 4(9):1646–1657

    CAS  Google Scholar 

  4. Nunn C, DiPietro A, Hodnett N, Sun P, Wells KM (2017) High-throughput automated design of experiment (DoE) and kinetic modeling to aid in process development of an API. Org Process Res Dev 22(1):54–61

    Google Scholar 

  5. Coley CW, Eyke NS, Jensen KF (2020) Autonomous discovery in the chemical sciences Part II: outlook. Angew Chem Int Ed Engl 59(52):23414–23436

    CAS  PubMed  Google Scholar 

  6. Selekman JA, Qiu J, Tran K, Stevens J, Rosso V, Simmons E et al (2017) High-throughput automation in chemical process development. Annu Rev Chem Biomol Eng 8(1):525–547

    PubMed  Google Scholar 

  7. Fridgeirsdottir GA, Harris R, Fischer PM, Roberts CJ (2016) Support tools in formulation development for poorly soluble drugs. J Pharm Sci 105(8):2260–2269

    CAS  PubMed  Google Scholar 

  8. Bahr MN, Modi D, Patel S, Campbell G, Stockdale G (2019) Understanding the role of sodium lauryl sulfate on the biorelevant solubility of a combination of poorly water-soluble drugs using high throughput experimentation and mechanistic absorption modeling. J Pharm Pharm Sci 22(1):221–246

    CAS  PubMed  Google Scholar 

  9. Rubin AE, Tummala S, Both DA, Wang C, Delaney EJ (2006) Emerging technologies supporting chemical process R&D and their increasing impact on productivity in the pharmaceutical industry. Chem Rev 106(7):2794–2810

    CAS  PubMed  Google Scholar 

  10. Thygs FB, Merz J, Schembecker G (2016) Automation of solubility measurements on a robotic platform. Chem Eng Technol 39(6):1049–1057

    CAS  Google Scholar 

  11. Alsenz J, Kansy M (2007) High throughput solubility measurement in drug discovery and development. Adv Drug Deliv Rev 59(7):546–567

    CAS  PubMed  Google Scholar 

  12. Bahr MN, Damon DB, Yates SD, Chin AS, Christopher JD, Cromer S et al (2018) Collaborative evaluation of commercially available automated powder dispensing platforms for high-throughput experimentation in pharmaceutical applications. Org Process Res Dev 22(11):1500–1508

    CAS  Google Scholar 

  13. Bahr MN, Angamuthu M, Leonhardt S, Campbell G, Neau SH (2021) Rapid screening approaches for solubility enhancement, precipitation inhibition and dissociation of a cocrystal drug substance using high throughput experimentation. J Drug Deliv Sci Technol 61:102196

    CAS  Google Scholar 

  14. Bahr MN, Morris MA, Tu NP, Nandkeolyar A (2020) Recent advances in high-throughput automated powder dispensing platforms for pharmaceutical applications. Org Process Res Dev 24(11):2752–2761

    CAS  Google Scholar 

  15. Utsey K, Gastonguay MS, Russell S, Freling R, Riggs MM, Elmokadem A (2020) Quantification of the impact of partition coefficient prediction methods on physiologically based pharmacokinetic model output using a standardized tissue composition. Drug Metab Dispos 48(10):903–916

    CAS  PubMed  Google Scholar 

  16. Selekman JA, Tran K, Xu Z, Dummeldinger M, Kiau S, Nolfo J et al (2016) High-throughput extractions: a new paradigm for workup optimization in pharmaceutical process development. Org Process Res Dev 20(10):1728–1737

    CAS  Google Scholar 

  17. Mobley DL, Chodera JD, Isaacs L, Gibb BC (2016) Advancing predictive modeling through focused development of model systems to drive new modeling innovations. In: UC Irvine: Department of Pharmaceutical Sciences U, editor

  18. Isik M, Levorse D, Rustenburg AS, Ndukwe IE, Wang H, Wang X et al (2018) pKa measurements for the SAMPL6 prediction challenge for a set of kinase inhibitor-like fragments. J Comput Aided Mol Des 32(10):1117–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Isik M, Levorse D, Mobley DL, Rhodes T, Chodera JD (2020) Octanol-water partition coefficient measurements for the SAMPL6 blind prediction challenge. J Comput Aided Mol Des 34(4):405–420

    CAS  PubMed  Google Scholar 

  20. Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper MD et al (2008) Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. J Med Chem 51(4):769–779

    CAS  PubMed  Google Scholar 

  21. Skillman AG, Geballe MT, Nicholls A (2010) SAMPL2 challenge: prediction of solvation energies and tautomer ratios. J Comput Aided Mol Des 24(4):257–258

    CAS  PubMed  Google Scholar 

  22. Geballe MT, Guthrie JP (2012) The SAMPL3 blind prediction challenge: transfer energy overview. J Comput Aided Mol Des 26(5):489–496

    CAS  PubMed  Google Scholar 

  23. Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ (2010) The SAMPL2 blind prediction challenge: introduction and overview. J Comput Aided Mol Des 24(4):259–279

    CAS  PubMed  Google Scholar 

  24. Guthrie JP (2014) SAMPL4, a blind challenge for computational solvation free energies: the compounds considered. J Comput Aided Mol Des 28(3):151–168

    CAS  PubMed  Google Scholar 

  25. Mobley DL, Wymer KL, Lim NM, Guthrie JP (2014) Blind prediction of solvation free energies from the SAMPL4 challenge. J Comput Aided Mol Des 28(3):135–150

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Muddana HS, Fenley AT, Mobley DL, Gilson MK (2014) The SAMPL4 host-guest blind prediction challenge: an overview. J Comput Aided Mol Des 28(4):305–317

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bannan CC, Burley KH, Chiu M, Shirts MR, Gilson MK, Mobley DL (2016) Blind prediction of cyclohexane-water distribution coefficients from the SAMPL5 challenge. J Comput Aided Mol Des 30(11):927–944

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bannan CC, Calabro G, Kyu DY, Mobley DL (2016) Calculating partition coefficients of small molecules in octanol/water and cyclohexane/water. J Chem Theory Comput 12(8):4015–4024

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Di L, Kerns EH (2016) pKa. In: Di L, Kerns EH (eds) Drug-like properties. Academic Press, Boston, pp 51–59

    Google Scholar 

  30. Mobley DL, Guthrie JP (2014) FreeSolv: a database of experimental and calculated hydration free energies, with input files. J Comput Aided Mol Des 28(7):711–720

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Arnott JA, Planey SL (2012) The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov 7(10):863–875

    CAS  PubMed  Google Scholar 

  32. Linkov I, Ames MR, Crouch EA, Satterstrom FK (2005) Uncertainty in octanol-water partition coefficient: implications for risk assessment and remedial costs. Environ Sci Technol 39(18):6917–6922

    CAS  PubMed  Google Scholar 

  33. Schönsee CD, Bucheli TD (2020) Experimental determination of octanol-water partition coefficients of selected natural toxins. J Chem Eng Data 65(4):1946–1953

    Google Scholar 

  34. Isik M, Bergazin TD, Fox T, Rizzi A, Chodera JD, Mobley DL (2020) Assessing the accuracy of octanol-water partition coefficient predictions in the SAMPL6 Part II log P Challenge. J Comput Aided Mol Des 34(4):335–370

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Avdeef A (2012) Solubility. In: Avdeef A (ed) Absorption and drug development. Wiley, New York, pp 251–318

    Google Scholar 

  36. Po HN, Senozan NM (2001) The Henderson-Hasselbalch equation: its history and limitations. J Chem Educ 78(11):1499

    CAS  Google Scholar 

  37. Jagannadham V, Sanjeev R (2012) Playing around with “Kaleidagraph” program for determination of pKa values of mono, di and tri basic acids in a physical-organic chemistry laboratory. Creat Educ 3(3):380–382

    Google Scholar 

  38. Settimo L, Bellman K, Knegtel RMA (2014) Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds. Pharm Res 31(4):1082–1095

    CAS  PubMed  Google Scholar 

  39. Reijenga J, van Hoof A, van Loon A, Teunissen B (2013) Development of methods for the determination of pKa values. Anal Chem Insights 8:53–71

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bavishi DD, Borkhataria CH (2016) Spring and parachute: HOW cocrystals enhance solubility. Prog Cryst Growth Charact Mater 62(3):1–8

    CAS  Google Scholar 

  41. Poulsen CE, Wootton RC, Wolff A, deMello AJ, Elvira KS (2015) A microfluidic platform for the rapid determination of distribution coefficients by gravity-assisted droplet-based liquid-liquid extraction. Anal Chem 87(12):6265–6270

    CAS  PubMed  Google Scholar 

  42. Matter H. Drug Design Strategies: Quantitative Approaches. Edited by David J. Livingstone and Andrew M. Davis. ChemMedChem. 2012;7(7):1295–6.

  43. Montalbán MG, Collado-González MM, Trigo R, DíazBaños FG, Víllora G (2015) Experimental measurements of octanol-water partition coefficients of ionic liquids. J Adv Chem Eng 5:1000133

    Google Scholar 

  44. Nandkeolyar A, Bahr M (2020) Automated high throughput pKa and distribution coefficient measurements of pharmaceutical compounds for SAMPL8 Blind Prediction Challenge: Zenodo. https://doi.org/10.5281/zenodo.4245127

  45. Pham M, Foster SW, Kurre S, Hunter RA, Grinias JP (2021) Use of portable capillary liquid chromatography for common educational demonstrations involving separations. J Chem Educ 98(7):2444–2448

    CAS  Google Scholar 

  46. Ediage EN, Aerts T, Lubin A, Cuyckens F, Dillen L, Verhaeghe T (2019) Strategies and analytical workflows to extend the dynamic range in quantitative LC–MS/MS analysis. Bioanalysis 11(12):1187–1204

    Google Scholar 

  47. Page JS, Kelly RT, Tang K, Smith RD (2007) Ionization and transmission efficiency in an electrospray ionization—mass spectrometry interface. J Am Soc Mass Spectrom 18(9):1582–1590

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the National Institutes of Health for its support of the SAMPL project via R01GM124270 to David L. Mobley (UC Irvine). The authors would also like to acknowledge Lisa McQueen and Alan Graves (formerly of GSK) for their contributions during the early stages of establishing the partnership, collecting the materials necessary for the study, and providing chemometrics insight. Lastly, we acknowledge the guidance and support from Kenneth Wells of GSK.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript was written through the contributions from each of the authors MNB, AN. Each author has given approval to the final version of the manuscript.

Corresponding author

Correspondence to Matthew N. Bahr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahr, M.N., Nandkeolyar, A., Kenna, J.K. et al. Automated high throughput pKa and distribution coefficient measurements of pharmaceutical compounds for the SAMPL8 blind prediction challenge. J Comput Aided Mol Des 35, 1141–1155 (2021). https://doi.org/10.1007/s10822-021-00427-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-021-00427-0

Keywords

Navigation