Skip to main content

Advertisement

Log in

A benchmark study of loop modeling methods applied to G protein-coupled receptors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

G protein-coupled receptors (GPCR) are important drug discovery targets. Despite progress, many GPCR structures have not yet been solved. For these targets, comparative modeling is used in virtual ligand screening to prioritize experimental efforts. However, the structure of extracellular loop 2 (ECL2) is often poorly predicted. This is significant due to involvement of ECL2 in ligand binding for many Class A GPCR. Here we examine the performance of loop modeling protocols available in the Rosetta (cyclic coordinate descent [CCD], KIC with fragments [KICF] and next generation KIC [NGK]) and Molecular Operating Environment (MOE) software suites (de novo search). ECL2 from GPCR crystal structures served as the structure prediction targets and were divided into four sets depending on loop length. Results suggest that KICF and NGK sampled and scored more loop models with sub-angstrom and near-atomic accuracy than CCD or de novo search for loops of 24 or fewer residues. None of the methods were able to sample loop conformations with near-atomic accuracy for the longest targets ranging from 25 to 32 residues based on 1000 models generated. For these long loop targets, increased conformational sampling is necessary. The strongly conserved disulfide bond between Cys3.25 and Cys45.50 in ECL2 proved an effective filter. Setting an upper limit of 5.1 Å on the S–S distance improved the lowest RMSD model included in the top 10 scored structures in Groups 1–4 on average between 0.33 and 1.27 Å. Disulfide bond formation and geometry optimization of ECL2 provided an additional incremental benefit in structure quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ribas C, Penela P, Murga C, Salcedo A, García-Hoz C, Jurado-Pueyo M, Aymerich I, Mayor F (2007) The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta BBA 1768:913–922

    Article  CAS  PubMed  Google Scholar 

  2. Lagerström MC, Schiöth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–357

    Article  CAS  PubMed  Google Scholar 

  3. Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gudermann T, Nürnberg B, Schultz G (1995) Receptors and G proteins as primary components of transmembrane signal transduction. Part 1. G-protein-coupled receptors: structure and function. J Mol Med 73:51–63

    Article  CAS  PubMed  Google Scholar 

  5. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  PubMed  Google Scholar 

  6. van der Kant R, Vriend G (2014) Alpha-Bulges in G Protein-Coupled Receptors. Int J Mol Sci 15:7841–7864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Isberg V, de Graaf C, Bortolato A, Cherezov V, Katritch V, Marshall FH, Mordalski S, Pin J, Stevens RC, Vriend G, Gloriam DE (2015) Generic GPCR residue numbers-aligning topology maps while minding the gaps. Trends Pharmacol Sci 36(1):22–31

    Article  CAS  PubMed  Google Scholar 

  8. Avlani VA, Gregory KJ, Morton CJ, Parker MW, Sexton PM, Christopoulos A (2007) Critical role for the second extracellular loop in the binding of both orthosteric and allosteric G protein-coupled receptor ligands. J Biol Chem 282:25677–25686

    Article  CAS  PubMed  Google Scholar 

  9. Peeters MC, van Westen GJP, Li Q, IJzerman AP (2011) Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation. Trends Pharmacol Sci 32:35–42

    Article  CAS  PubMed  Google Scholar 

  10. Klco JM, Wiegand CB, Narzinski K, Baranski TJ (2005) Essential role for the second extracellular loop in C5a receptor activation. Nat Struct Mol Biol 12:320

    Article  CAS  PubMed  Google Scholar 

  11. Nanevicz T, Wang L, Chen M, Ishii M, Coughlin SR (1996) Thrombin receptor activating mutations: alteration of an extracellular agonist recognition domain causes constitutive signaling. J Biol Chem 271:702–706

    Article  CAS  PubMed  Google Scholar 

  12. Pantel J, Legendre M, Cabrol S, Hilal L, Hajaji Y, Morisset S, Nivot S, Vie-Luton M, Grouselle D, Kerdanet Md, Kadiri A, Epelbaum J, Bouc YL, Amselem S (2006) Loss of constitutive activity of the growth hormone secretagogue receptor in familial short stature. J Clin Invest 116:760–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wheatley M, Wootten D, Conner M, Simms J, Kendrick R, Logan R, Poyner D, Barwell J (2012) Lifting the lid on GPCRs: the role of extracellular loops. Br J Pharmacol 165:1688–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chien EYT, Liu W, Zhao Q, Katritch V, Won Han G, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chrencik JE, Roth CB, Terakado M, Kurata H, Omi R, Kihara Y, Warshaviak D, Nakade S, Asmar-Rovira G, Mileni M, Mizuno H, Griffith MT, Rodgers C, Han GW, Velasquez J, Chun J, Stevens RC, Hanson MA (2015) Crystal structure of antagonist bound human lysophosphatidic acid receptor 1. Cell 161:1633–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G, Desale H, Clemons B, Cahalan SM, Schuerer SC, Sanna MG, Han GW, Kuhn P, Rosen H, Stevens RC (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335:851–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shao Z, Yin J, Chapman K, Grzemska M, Clark L, Wang J, Rosenbaum DM (2016) High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature 540:602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang J, Zhang K, Gao Z, Paoletta S, Zhang D, Han GW, Li T, Ma L, Zhang W, Müller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q (2014) Agonist-bound structure of the human P2Y12 receptor. Nature 509:119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang C, Wu H, Katritch V, Han GW, Huang X, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497:338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Murakami M, Kouyama T (2008) Crystal structure of squid rhodopsin. Nature 453:363

    Article  CAS  PubMed  Google Scholar 

  22. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng RKY, Fiez-Vandal C, Schlenker O, Edman K, Aggeler B, Brown DG, Brown GA, Cooke RM, Dumelin CE, Doré AS, Geschwindner S, Grebner C, Hermansson N, Jazayeri A, Johansson P, Leong L, Prihandoko R, Rappas M, Soutter H, Snijder A, Sundström L, Tehan B, Thornton P, Troast D, Wiggin G, Zhukov A, Marshall FH, Dekker N (2017) Structural insight into allosteric modulation of protease-activated receptor 2. Nature 545:112

    Article  CAS  PubMed  Google Scholar 

  24. Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE, Weis WI, Coughlin SR, Kobilka BK (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492:387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma Y, Yue Y, Ma Y, Zhang Q, Zhou Q, Song Y, Shen Y, Li X, Ma X, Li C, Hanson MA, Han GW, Sickmier EA, Swaminath G, Zhao S, Stevens RC, Hu LA, Zhong W, Zhang M, Xu F (2017) Structural basis for apelin control of the human apelin receptor. Structure 25:866.e4

    Article  CAS  Google Scholar 

  26. Lu J, Byrne N, Wang J, Bricogne G, Brown FK, Chobanian HR, Colletti SL, Salvo JD, Thomas-Fowlkes B, Guo Y, Hall DL, Hadix J, Hastings NB, Hermes JD, Ho T, Howard AD, Josien H, Kornienko M, Lumb KJ, Miller MW, Patel SB, Pio B, Plummer CW, Sherborne BS, Sheth P, Souza S, Tummala S, Vonrhein C, Webb M, Allen SJ, Johnston JM, Weinglass AB, Sharma S, Soisson SM (2017) Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nat Struct Mol Biol 24:570

    Article  CAS  PubMed  Google Scholar 

  27. Glukhova A, Thal DM, Nguyen AT, Vecchio EA, Jörg M, Scammells PJ, May LT, Sexton PM, Christopoulos A (2017) Structure of the adenosine A1 receptor reveals the basis for subtype selectivity. Cell 168:877.e13

    Article  CAS  Google Scholar 

  28. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP, Cherezov V, Stevens RC (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pándy-Szekeres G, Munk C, Tsonkov TM, Mordalski S, Harpsøe K, Hauser AS, Bojarski AJ, Gloriam DE (2018) GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res 46:D446

    Article  CAS  Google Scholar 

  30. Michino M, Abola E, Brooks CL, Dixon JS, Moult J, Stevens RC (2009) Community-wide assessment of GPCR structure modeling and docking understanding. Nat Rev Drug Discov 8:455–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kufareva I, Rueda M, Katritch V, Stevens RC, Abagyan R (2011) Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. Structure 19:1108–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen KM, Sun J, Salvo JS, Baker D, Barth P (2014) High-resolution modeling of transmembrane helical protein structures from distant homologues. PLoS Comput Biol 10:e1003636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294:93–96

    Article  CAS  PubMed  Google Scholar 

  34. Siu FY, He M, Graaf Cd, Han GW, Yang D, Zhang Z, Zhou C, Xu Q, Wacker D, Joseph JS, Liu W, Lau J, Cherezov V, Katritch V, Wang M, Stevens RC (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499:444

    Article  CAS  PubMed  Google Scholar 

  35. Jazayeri A, Doré AS, Lamb D, Krishnamurthy H, Southall SM, Baig AH, Bortolato A, Koglin M, Robertson NJ, Errey JC, Andrews SP, Teobald I, Brown AJH, Cooke RM, Weir M, Marshall FH (2016) Extra-helical binding site of a glucagon receptor antagonist. Nature 533:274–277

    Article  CAS  PubMed  Google Scholar 

  36. Zhang H, Qiao A, Yang D, Yang L, Dai A, Graaf Cd, Reedtz-Runge S, Dharmarajan V, Zhang H, Han GW, Grant TD, Sierra RG, Weierstall U, Nelson G, Liu W, Wu Y, Ma L, Cai X, Lin G, Wu X, Geng Z, Dong Y, Song G, Griffin PR, Lau J, Cherezov V, Yang H, Hanson MA, Stevens RC, Zhao Q, Jiang H, Wang M, Wu B (2017) Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546:259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jazayeri A, Rappas M, Brown AJH, Kean J, Errey JC, Robertson NJ, Fiez-Vandal C, Andrews SP, Congreve M, Bortolato A, Mason JS, Baig AH, Teobald I, Doré AS, Weir M, Cooke RM, Marshall FH (2017) Crystal structure of the GLP-1 receptor bound to a peptide agonist. Nature 546:254

    Article  CAS  PubMed  Google Scholar 

  38. Song G, Yang D, Wang Y, de Graaf C, Zhou Q, Jiang S, Liu K, Cai X, Dai A, Lin G, Liu D, Wu F, Wu Y, Zhao S, Ye L, Han GW, Lau J, Wu B, Hanson MA, Liu Z, Wang M, Stevens RC (2017) Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546:312–315

    Article  CAS  PubMed  Google Scholar 

  39. Liang Y, Khoshouei M, Glukhova A, Furness SGB, Zhao P, Clydesdale L, Koole C, Truong TT, Thal DM, Lei S, Radjainia M, Danev R, Baumeister W, Wang M, Miller LJ, Christopoulos A, Sexton PM, Wootten D (2018) Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex. Nature 555:121–125

    Article  CAS  PubMed  Google Scholar 

  40. Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T, Kobayashi T (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hübner H, Pardon E, Valant C, Sexton PM, Christopoulos A, Felder CC, Gmeiner P, Steyaert J, Weis WI, Garcia KC, Wess J, Kobilka BK (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504:101–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thorsen TS, Matt R, Weis WI, Kobilka BK (2014) Modified T4 lysozyme fusion proteins facilitate G protein-coupled receptor crystallogenesis. Structure 22:1657–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, Weis WI, Wess J, Kobilka BK (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482:552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C, Fenalti G, Wu H, Han GW, Cherezov V, Abagyan R, Stevens RC, Handel TM (2015) Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 347:1117–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hua T, Vemuri K, Nikas SP, Laprairie RB, Wu Y, Qu L, Pu M, Korde A, Jiang S, Ho J, Han GW, Ding K, Li X, Liu H, Hanson MA, Zhao S, Bohn LM, Makriyannis A, Stevens RC, Liu Z (2017) Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature 547:468–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hua T, Vemuri K, Pu M, Qu L, Han GW, Wu Y, Zhao S, Shui W, Li S, Korde A, Laprairie RB, Stahl EL, Ho J, Zvonok N, Zhou H, Kufareva I, Wu B, Zhao Q, Hanson MA, Bohn LM, Makriyannis A, Stevens RC, Liu Z (2016) Crystal structure of the human cannabinoid receptor CB1. Cell 167:762.e14

    Article  CAS  Google Scholar 

  47. Zhang K, Zhang J, Gao Z, Zhang D, Zhu L, Han GW, Moss SM, Paoletta S, Kiselev E, Lu W, Fenalti G, Zhang W, Müller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q (2014) Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 509:115–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Byrne EFX, Sircar R, Miller PS, Hedger G, Luchetti G, Nachtergaele S, Tully MD, Mydock-McGrane L, Covey DF, Rambo RP, Sansom MSP, Newstead S, Rohatgi R, Siebold C (2016) Structural basis of smoothened regulation by its extracellular domains. Nature 535:517–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weierstall U, James D, Wang C, White TA, Wang D, Liu W, Spence JCH, Bruce Doak R, Nelson G, Fromme P, Fromme R, Grotjohann I, Kupitz C, Zatsepin NA, Liu H, Basu S, Wacker D, Han GW, Katritch V, Boutet S, Messerschmidt M, Williams GJ, Koglin JE, Marvin Seibert M, Klinker M, Gati C, Shoeman RL, Barty A, Chapman HN, Kirian RA, Beyerlein KR, Stevens RC, Li D, Shah STA, Howe N, Caffrey M, Cherezov V (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5:3309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang C, Wu H, Evron T, Vardy E, Han GW, Huang X, Hufeisen SJ, Mangano TJ, Urban DJ, Katritch V, Cherezov V, Caron MG, Roth BL, Stevens RC (2014) Structural basis for smoothened receptor modulation and chemoresistance to anticancer drugs. Nat Commun 5:4355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fenalti G, Giguere PM, Katritch V, Huang X, Thompson AA, Cherezov V, Roth BL, Stevens RC (2014) Molecular control of δ-opioid receptor signalling. Nature 506:191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fenalti G, Zatsepin NA, Betti C, Giguere P, Han GW, Ishchenko A, Liu W, Guillemyn K, Zhang H, James D, Wang D, Weierstall U, Spence JCH, Boutet S, Messerschmidt M, Williams GJ, Gati C, Yefanov OM, White TA, Oberthuer D, Metz M, Yoon CH, Barty A, Chapman HN, Basu S, Coe J, Conrad CE, Fromme R, Fromme P, Tourwé D, Schiller PW, Roth BL, Ballet S, Katritch V, Stevens RC, Cherezov V (2015) Structural basis for bifunctional peptide recognition at human δ-opioid receptor. Nat Struct Mol Biol 22:265–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E, Huang X, Trapella C, Guerrini R, Calo G, Roth BL, Cherezov V, Stevens RC (2012) Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485:395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miller RL, Thompson AA, Trapella C, Guerrini R, Malfacini D, Patel N, Han GW, Cherezov V, Caló G, Katritch V, Stevens RC (2015) The importance of ligand-receptor conformational pairs in stabilization: spotlight on the N/OFQ G protein-coupled receptor. Structure 23:2291–2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang H, Han GW, Batyuk A, Ishchenko A, White KL, Patel N, Sadybekov A, Zamlynny B, Rudd MT, Hollenstein K, Tolstikova A, White TA, Hunter MS, Weierstall U, Liu W, Babaoglu K, Moore EL, Katz RD, Shipman JM, Garcia-Calvo M, Sharma S, Sheth P, Soisson SM, Stevens RC, Katritch V, Cherezov V (2017) Structural basis for selectivity and diversity in angiotensin II receptors. Nature 544:327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Egloff P, Hillenbrand M, Klenk C, Batyuk A, Heine P, Balada S, Schlinkmann KM, Scott DJ, Schütz M, Plückthun A (2014) Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc Natl Acad Sci USA 111:655

    Article  CAS  Google Scholar 

  57. White JF, Noinaj N, Shibata Y, Love J, Kloss B, Xu F, Gvozdenovic-Jeremic J, Shah P, Shiloach J, Tate CG, Grisshammer R (2012) Structure of the agonist-bound neurotensin receptor. Nature 490:508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Krumm BE, White JF, Shah P, Grisshammer R (2015) Structural prerequisites for G-protein activation by the neurotensin receptor. Nat Commun 6:7895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Krumm BE, Lee S, Bhattacharya S, Botos I, White CF, Du H, Vaidehi N, Grisshammer R (2016) Structure and dynamics of a constitutively active neurotensin receptor. Sci Rep 6:38564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Warne T, Moukhametzianov R, Baker JG, Nehmé R, Edwards PC, Leslie AGW, Schertler GFX, Tate CG (2011) The structural basis for agonist and partial agonist action on a β(1)-adrenergic receptor. Nature 469:241–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moukhametzianov R, Warne T, Edwards PC, Serrano-Vega MJ, Leslie AG, Tate CG, Schertler GF (2011) Two distinct conformations of helix 6 observed in antagonist-bound structures of a beta1-adrenergic receptor. Proc Natl Acad Sci USA 108:8228–8232

    Article  PubMed  Google Scholar 

  62. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AGW, Tate CG, Schertler GF (2008) X. Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454:486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Christopher JA, Brown J, Doré AS, Errey JC, Koglin M, Marshall FH, Myszka DG, Rich RL, Tate CG, Tehan B, Warne T, Congreve M (2013) Biophysical fragment screening of the β1-adrenergic receptor: identification of high affinity arylpiperazine leads using structure-based drug design. J Med Chem 56:3446–3455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Warne T, Edwards PC, Leslie AGW, Tate CG (2012) Crystal structures of a stabilized β1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 20:841–849

    Article  CAS  PubMed  Google Scholar 

  65. Miller-Gallacher JL, Nehmé R, Warne T, Edwards PC, Schertler GFX, Leslie AGW, Tate CG (2014) The 2.1 Å resolution structure of cyanopindolol-bound β1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor. PLoS ONE 9:e92727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang J, Chen S, Zhang JJ, Huang X (2013) Crystal structure of oligomeric β1-adrenergic G protein-coupled receptors in ligand-free basal state. Nat Struct Mol Biol 20:419–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sato T, Baker J, Warne T, Brown GA, Leslie AGW, Congreve M, Tate CG (2015) Pharmacological analysis and structure determination of 7-methylcyanopindolol-bound β1-adrenergic receptor. Mol Pharmacol 88:1024–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rasmussen SGF, Choi H, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sanishvili R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  CAS  PubMed  Google Scholar 

  69. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien VP, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 Å structure of the human beta2-adrenergic receptor. Structure 16:897–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC (2010) Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc 132:11443–11445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bokoch MP, Zou Y, Rasmussen SGF, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi H, Thian FS, Kobilka TS, Puglisi JD, Weis WI, Pardo L, Prosser RS, Mueller L, Kobilka BK (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463:108–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rasmussen SGF, Choi H, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011) Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature 469:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SGF, Choi H, Devree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK (2011) Structure and function of an irreversible agonist-β(2) adrenoceptor complex. Nature 469:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah STA, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ring AM, Manglik A, Kruse AC, Enos MD, Weis WI, Garcia KC, Kobilka BK (2013) Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 502:575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zou Y, Weis WI, Kobilka BK (2012) N-terminal T4 lysozyme fusion facilitates crystallization of a G protein coupled receptor. PLoS ONE 7:e46039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Weichert D, Kruse AC, Manglik A, Hiller C, Zhang C, Hübner H, Kobilka BK, Gmeiner P (2014) Covalent agonists for studying G protein-coupled receptor activation. Proc Natl Acad Sci USA 111:10744–10748

    Article  CAS  PubMed  Google Scholar 

  78. Staus DP, Strachan RT, Manglik A, Pani B, Kahsai AW, Kim TH, Wingler LM, Ahn S, Chatterjee A, Masoudi A, Kruse AC, Pardon E, Steyaert J, Weis WI, Prosser RS, Kobilka BK, Costa T, Lefkowitz RJ (2016) Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 535:448–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang CY, Olieric V, Ma P, Howe N, Vogeley L, Liu X, Warshamanage R, Weinert T, Panepucci E, Kobilka B, Diederichs K, Wang M, Caffrey M (2016) In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures. Acta Crystallogr D 72:93–112

    Article  CAS  Google Scholar 

  80. Ma P, Weichert D, Aleksandrov LA, Jensen TJ, Riordan JR, Liu X, Kobilka BK, Caffrey M (2017) The cubicon method for concentrating membrane proteins in the cubic mesophase. Nat Protoc 12:1745–1762

    Article  CAS  PubMed  Google Scholar 

  81. Shihoya W, Nishizawa T, Okuta A, Tani K, Dohmae N, Fujiyoshi Y, Nureki O, Doi T (2016) Activation mechanism of endothelin ETB receptor by endothelin-1. Nature 537:363

    Article  CAS  PubMed  Google Scholar 

  82. Shihoya W, Nishizawa T, Yamashita K, Inoue A, Hirata K, Kadji FMN, Okuta A, Tani K, Aoki J, Fujiyoshi Y, Doi T, Nureki O (2017) X-ray structures of endothelin ETB receptor bound to clinical antagonist bosentan and its analog. Nat Struct Mol Biol 24:758–764

    Article  CAS  PubMed  Google Scholar 

  83. Okada T, Sugihara M, Bondar A, Elstner M, Entel P, Buss V (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J Mol Biol 342:571–583L; This paper is dedicated to Dr Yoshimasa Kyogoku

    Article  CAS  PubMed  Google Scholar 

  84. Li J, Edwards PC, Burghammer M, Villa C, Schertler GF (2004) Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol 343:1409–1438

    Article  CAS  PubMed  Google Scholar 

  85. Okada T, Fujiyoshi Y, Silow M, Navarro J, Landau EM, Shichida Y (2002) Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc Natl Acad Sci USA 99:5982–5987

    Article  CAS  PubMed  Google Scholar 

  86. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  87. Teller DC, Okada T, Behnke CA, Palczewski K, Stenkamp RE (2001) Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry 40:7761–7772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nakamichi H, Okada T (2006) Crystallographic analysis of primary visual photochemistry. Angew Chem Int Ed Engl 45:4270–4273

    Article  CAS  PubMed  Google Scholar 

  89. Nakamichi H, Buss V, Okada T (2007) Photoisomerization mechanism of rhodopsin and 9-cis-rhodopsin revealed by X-ray crystallography. Biophys J 92:106

    Article  CAS  Google Scholar 

  90. Standfuss J, Xie G, Edwards PC, Burghammer M, Oprian DD, Schertler GF (2007) Crystal structure of a thermally stable rhodopsin mutant. J Mol Biol 372:1179–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nakamichi H, Okada T (2006) Local peptide movement in the photoreaction intermediate of rhodopsin. Proc Natl Acad Sci USA 103:12729–12734

    Article  CAS  PubMed  Google Scholar 

  92. Salom D, Lodowski DT, Stenkamp RE, Le Trong I, Golczak M, Jastrzebska B, Harris T, Ballesteros JA, Palczewski K (2006) Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc Natl Acad Sci USA 103:16123–16128

    Article  CAS  PubMed  Google Scholar 

  93. Standfuss J, Edwards PC, D’Antona A, Fransen M, Xie G, Oprian DD, Schertler GF (2011) The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471:656–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Makino CL, Riley CK, Looney J, Crouch RK, Okada T (2010) Binding of more than one retinoid to visual opsins. Biophys J 99:2366–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Park JH, Scheerer P, Hofmann KP, Choe H, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–187

    Article  CAS  PubMed  Google Scholar 

  96. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe H, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502

    Article  CAS  PubMed  Google Scholar 

  97. Choe H, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, Hofmann KP, Scheerer P, Ernst OP (2011) Crystal structure of metarhodopsin II. Nature 471:651–655

    Article  CAS  PubMed  Google Scholar 

  98. Stenkamp RE (2008) Alternative models for two crystal structures of bovine rhodopsin. Acta Crystallogr D D64:902–904

    Article  CAS  PubMed  Google Scholar 

  99. Blankenship E, Vahedi-Faridi A, Lodowski DT (2015) The high-resolution structure of activated opsin reveals a conserved solvent network in the transmembrane region essential for activation. Structure 23:2358–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Park JH, Morizumi T, Li Y, Hong JE, Pai EF, Hofmann KP, Choe H, Ernst OP (2013) Opsin, a structural model for olfactory receptors? Angew Chem Int Ed Engl 52:11021–11024

    Article  CAS  PubMed  Google Scholar 

  101. Singhal A, Ostermaier MK, Vishnivetskiy SA, Panneels V, Homan KT, Tesmer JJG, Veprintsev D, Deupi X, Gurevich VV, Schertler GFX, Standfuss J (2013) Insights into congenital stationary night blindness based on the structure of G90D rhodopsin. EMBO Rep 14:520–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Szczepek M, Beyrière F, Hofmann KP, Elgeti M, Kazmin R, Rose A, Bartl FJ, von Stetten D, Heck M, Sommer ME, Hildebrand PW, Scheerer P (2014) Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat Commun 5:4801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Deupi X, Edwards P, Singhal A, Nickle B, Oprian D, Schertler G, Standfuss J (2012) Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proc Natl Acad Sci USA 109:119–124

    Article  PubMed  Google Scholar 

  104. Gulati S, Jastrzebska B, Banerjee S, Placeres ÁL, Miszta P, Gao S, Gunderson K, Tochtrop GP, Filipek S, Katayama K, Kiser PD, Mogi M, Stewart PL, Palczewski K (2017) Photocyclic behavior of rhodopsin induced by an atypical isomerization mechanism. Proc Natl Acad Sci USA 114:E2615

    Article  CAS  Google Scholar 

  105. Singhal A, Guo Y, Matkovic M, Schertler G, Deupi X, Yan EC, Standfuss J (2016) Structural role of the T94I rhodopsin mutation in congenital stationary night blindness. EMBO Rep 17:1431–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AGW, Tate CG (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Doré AS, Robertson N, Errey JC, Ng I, Hollenstein K, Tehan B, Hurrell E, Bennett K, Congreve M, Magnani F, Tate CG, Weir M, Marshall FH (2011) Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19:1283–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jaakola V, Griffith MT, Hanson MA, Cherezov V, Chien EYT, Lane JR, IJzerman AP, Stevens RC (2008) The 2.6 Angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao Z, Cherezov V, Stevens RC (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Congreve M, Andrews SP, Doré AS, Hollenstein K, Hurrell E, Langmead CJ, Mason JS, Ng IW, Tehan B, Zhukov A, Weir M, Marshall FH (2012) Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure based drug design. J Med Chem 55:1898–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C, Nakada-Nakura Y, Kusano-Arai O, Weyand S, Shimamura T, Nomura N, Cameron AD, Kobayashi T, Hamakubo T, Iwata S, Murata T (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482:237–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lebon G, Edwards PC, Leslie AGW, Tate CG (2015) Molecular determinants of CGS21680 binding to the human adenosine A2A receptor. Mol Pharmacol 87:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Segala E, Guo D, Cheng RKY, Bortolato A, Deflorian F, Doré AS, Errey JC, Heitman LH, IJzerman AP, Marshall FH, Cooke RM (2016) Controlling the dissociation of ligands from the adenosine A2A receptor through modulation of salt bridge strength. J Med Chem 59:6470–6479

    Article  CAS  PubMed  Google Scholar 

  114. Carpenter B, Nehmé R, Warne T, Leslie AGW, Tate CG (2016) Structure of the adenosine A(2A) receptor bound to an engineered G protein. Nature 536:104–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sun B, Bachhawat P, Chu ML, Wood M, Ceska T, Sands ZA, Mercier J, Lebon F, Kobilka TS, Kobilka BK (2017) Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket. Proc Natl Acad Sci USA 114:2066–2071

    Article  CAS  PubMed  Google Scholar 

  116. Batyuk A, Galli L, Ishchenko A, Han GW, Gati C, Popov PA, Lee M, Stauch B, White TA, Barty A, Aquila A, Hunter MS, Liang M, Boutet S, Pu M, Liu Z, Nelson G, James D, Li C, Zhao Y, Spence JCH, Liu W, Fromme P, Katritch V, Weierstall U, Stevens RC, Cherezov V (2016) Native phasing of X-ray free-electron laser data for a G protein-coupled receptor. Sci Adv 2:e1600292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dore AS, Bortolato A, Hollenstein K, Cheng R, Marshall HF, Read J (2018) Decoding corticotropin-releasing factor receptor type 1 crystal structures. http://www.eurekaselect.com/149116/article. Accessed 1 May 2018

  118. Thal DM, Sun B, Feng D, Nawaratne V, Leach K, Felder CC, Bures MG, Evans DA, Weis WI, Bachhawat P, Kobilka TS, Sexton PM, Kobilka BK, Christopoulos A (2016) Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 531:335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A, Feinberg EN, Angelini A, Waghray D, Dror RO, Ploegh HL, Garcia KC (2015) Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347:1113–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zheng Y, Han GW, Abagyan R, Wu B, Stevens RC, Cherezov V, Kufareva I, Handel TM (2017) Structure of CC chemokine receptor 5 with a potent chemokine antagonist reveals mechanisms of chemokine recognition and molecular mimicry by HIV. Immunity 46:1017.e5

    Article  CAS  Google Scholar 

  121. Zhang D, Gao Z, Zhang K, Kiselev E, Crane S, Wang J, Paoletta S, Yi C, Ma L, Zhang W, Han GW, Liu H, Cherezov V, Katritch V, Jiang H, Stevens RC, Jacobson KA, Zhao Q, Wu B (2015) Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 520:317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, Conn PJ, Stevens RC (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344:58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yin J, Babaoglu K, Brautigam CA, Clark L, Shao Z, Scheuermann TH, Harrell CM, Gotter AL, Roecker AJ, Winrow CJ, Renger JJ, Coleman PJ, Rosenbaum DM (2016) Structure and ligand-binding mechanism of the human OX1 and OX2 orexin receptors. Nat Struct Mol Biol 23:293

    Article  CAS  PubMed  Google Scholar 

  124. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:526

    Article  CAS  Google Scholar 

  125. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gerber PR, Müller K (1995) MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry. J Comput Aided Mol Des 9:251–268

    Article  CAS  PubMed  Google Scholar 

  127. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641

    Article  CAS  PubMed  Google Scholar 

  128. Case D, Darden T, Cheatham T, Simmerling C, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz K, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Götz A, Kolossváry I, Wong KF, Paesani F, Kollman PA (2012) AMBER 12. University of California, San Francisco, vol 79, pp 926–935

    Google Scholar 

  129. Canutescu AA, Dunbrack RL (2003) Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci 12:963–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang C, Bradley P, Baker D (2007) Protein-protein docking with backbone flexibility. J Mol Biol 373:503–519

    Article  CAS  PubMed  Google Scholar 

  131. Mandell DJ, Coutsias EA, Kortemme T (2009) Sub-Angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat Methods 6:551–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Stein A, Kortemme T (2013) Increased sampling of near-native protein conformations. PLoS ONE 8(5):e63090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Berkholz DS, Driggers CM, Shapovalov MV, Dunbrack RL, Karplus PA (2012) Nonplanar peptide bonds in proteins are common and conserved but not biased toward active sites. Proc Natl Acad Sci USA 109:449–453

    Article  PubMed  Google Scholar 

  134. Leaver-Fay A, O’Meara MJ, Tyka M, Jacak R, Song Y, Kellogg EH, Thompson J, Davis IW, Pache RA, Lyskov S, Gray JJ, Kortemme T, Richardson JS, Havranek JJ, Snoeyink J, Baker D, Kuhlman B (2013) Scientific benchmarks for guiding macromolecular energy function improvement. Methods Enzymol 523:109–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. O’Meara MJ, Leaver-Fay A, Tyka MD, Stein A, Houlihan K, DiMaio F, Bradley P, Kortemme T, Baker D, Snoeyink J, Kuhlman B (2015) Combined covalent-electrostatic model of hydrogen bonding improves structure prediction with Rosetta. J Chem Theory Comput 11:609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Park H, Bradley P, Greisen P, Liu Y, Mulligan VK, Kim DE, Baker D, DiMaio F (2016) Simultaneous optimization of biomolecular energy functions on features from small molecules and macromolecules. J Chem Theory Comput 12:6201–6212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, DiMaio FP, Park H, Shapovalov MV, Renfrew PD, Mulligan VK, Kappel K, Labonte JW, Pacella MS, Bonneau R, Bradley P, Dunbrack RL, Das R, Baker D, Kuhlman B, Kortemme T, Gray JJ (2017) The Rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput 13:3031–3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Boomsma W, Hamelryck T (2005) Full cyclic coordinate descent: solving the protein loop closure problem in Cα space. BMC Bioinformatics 6:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rotkiewicz P, Skolnick J (2008) Fast procedure for reconstruction of full-atom protein models from reduced representations. J Comput Chem 29:1460–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE (2004) Friesner, R. A. A hierarchical approach to all-atom protein loop prediction. Proteins 55:351–367

    Article  CAS  PubMed  Google Scholar 

  141. Kufareva I, Katritch V, Stevens RC, Abagyan R (2014) Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: meeting new challenges. Structure 22:1120–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Arora B, Coudrat T, Wooten D, Christopoulos A, Noronha SB, Sexton PM (2016) Prediction of loops in G protein-coupled receptor homology models: effect of imprecise surroundings and constraints. J Chem Inf Model 56:671–686

    Article  CAS  PubMed  Google Scholar 

  143. Kmiecik S, Jamroz M, Kolinski M (2014) Structure prediction of the second extracellular loop in G protein-coupled receptors. Biophys J 106:2408–2416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by National Institute of Mental Health (Grant No. R15 MH109034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abby L. Parrill.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wink, L.H., Baker, D.L., Cole, J.A. et al. A benchmark study of loop modeling methods applied to G protein-coupled receptors. J Comput Aided Mol Des 33, 573–595 (2019). https://doi.org/10.1007/s10822-019-00196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00196-x

Keywords

Navigation