Skip to main content
Log in

Rescoring of docking poses under Occam’s Razor: are there simpler solutions?

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Ligand affinity prediction from docking simulations is usually performed by means of highly empirical and diverse protocols. These protocols often involve the re-scoring of poses generated by a force field (FF) based Hamiltonian to provide either estimated binding affinities—or alternatively, some empirical goodness score. Re-scoring is performed by so-called scoring functions—typically, a reweighted sum of FF terms augmented by additional terms (e.g., desolvation/entropic penalty, hydrophobicity, aromatic interactions etc.). Sometimes, the scoring function actually drives ligand positioning, but often it only operates on the best scoring poses ranked top by the initial ligand positioning tool. In either of these rather intricate scenarios, scoring functions are docking-specific models, and most require machine-learning-based calibration. Therefore, docking simulations are less straightforward when compared to “standard” molecular simulations in which the FF Hamiltonian defines the energy, and affinity emerges as an ensemble average property over pools of representative conformers (i.e., the trajectory). Paraphrasing on Occam’s Razor principle, additional model complexity is only acceptable if demonstrated to bring a significant improvement of prediction quality. In this work we therefore examined whether the complexity inherent to scoring functions is indeed justified. For this purpose we compared sampler for multiple protein–ligand entities, a general purpose conformation sampler based on the AMBER/GAFF FF, complemented with continuum solvation terms, with several state of the art docking tools that rely on calibrated scoring functions (Glide, Gold, Autodock-Vina) in terms of its ability to top-rank the actives from large and diverse ligand series associated with various proteins. There is no clear winner of this study, where each program performed well on most of the targets, but also failed with respect to at least one of them. Therefore, a well-parameterized force field with a simple, energy-based ligand ranking protocol appears to be an as effective docking protocol as intricate rescoring strategies based on scoring functions. A tool that can sample the conformational space of the free ligand, the bound ligand and the protein binding site using the same force field may avoid many of the approximations common to contemporary docking protocols and allow e.g., for docking into highly flexible active sites, when current scoring functions are not well suited to estimate receptor strain energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pason LP, Sotriffer CA (2016) Mol Inform 35(11–12):541

    Article  CAS  PubMed  Google Scholar 

  2. Ain QU, Aleksandrova A, Roessler FD, Ballester PJ (2015) Wiley Interdiscip Rev Comput Mol Sci 5(6):405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cleves AE, Jain AN (2015) J Comput Aided Mol Design 29(6):485

    Article  CAS  Google Scholar 

  4. Lindh M, Svensson F, Schaal W, Zhang J, Skold C, Brandt P, Karlen A (2015) J Chem Inform Model 55(2):343

    Article  CAS  Google Scholar 

  5. Xu WJ, Lucke AJ, Fairlie DP (2015) J Mol Graph Model 57:76

    Article  CAS  PubMed  Google Scholar 

  6. Parenti MD, Rastelli G (2012) Biotechnol Adv 30(1):244

    Article  CAS  PubMed  Google Scholar 

  7. Neudert G, Klebe G (2011) J Chem Inform Model 51(10):2731

    Article  CAS  Google Scholar 

  8. Shen QC, Xiong B, Zheng MY, Luo XM, Luo C, Liu XA, Du Y, Li J, Zhu WL, Shen JK, Jiang HL (2011) J Chem Inform Model 51(2):386

    Article  CAS  Google Scholar 

  9. Guvench O, MacKerell AD Jr (2008) Methods Mol Biol 443:63

    Article  CAS  PubMed  Google Scholar 

  10. Damm W, Van Gunsteren WE (2000) J Comput Chem 21(9):774

    Article  CAS  Google Scholar 

  11. Rasmussen K (1999) J Carbohydr Chem 18(7):789

    Article  CAS  Google Scholar 

  12. Halgren TA (1996) J Comput Chem 17(5–6):490

    Article  CAS  Google Scholar 

  13. Halgren TA (1995) Curr Opin Struct Biol 5(2):205

    Article  CAS  PubMed  Google Scholar 

  14. Doweyko AM (2008) J Comput Aided Mol Des 22(2):81

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez MP, Teran C, Saiz-Urra L, Teijeira M (2008) Curr Topics Med Chem 8:1606

    Article  CAS  Google Scholar 

  16. Klebe G (2008) Understanding QSAR: do we always use the correct structural models to establish affinity correlation? http://www.qsar2008.org/home/FA04-10-12-42_h6vpw99c3zxmfq28f4e9/qsar2008.org/public_html/File/abstract%20session%207/Klebe_QSAR_Uppsala_2008.pdf. Accessed 2009

  17. Maggiora GM (2006) J Chem Inform Model 46:1535

    Article  CAS  Google Scholar 

  18. Mullinax JW, Noid WG (2010) Proc Natl Acad Sci USA 107(46):19867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blundell TL, Sibanda BL, Sternberg MJ, Thornton JM (1987) Nature 326(6111):347

    Article  CAS  PubMed  Google Scholar 

  20. Watson P (2008) J Chem Inform Model 48(1):166

    Article  CAS  Google Scholar 

  21. Horvath D (1997) J Med Chem 15:2412

    Article  Google Scholar 

  22. Ding F, Dokholyan NV (2013) J Chem Inform Model 53(8):1871

    Article  CAS  Google Scholar 

  23. Krüger DM, Jessen G, Gohlke H (2012) J Chem Inform Model 52(11):2807

    Article  CAS  Google Scholar 

  24. Yin S, Biedermannova L, Vondrasek J, Dokholyan NV (2008) J Chem Inform Model 48(8):1656

    Article  CAS  Google Scholar 

  25. Jones G, Willett P, Glen RC (1995) J Mol Biol 245(1):43

    Article  CAS  PubMed  Google Scholar 

  26. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267(3):727

    Article  CAS  PubMed  Google Scholar 

  27. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) J Med Chem 49(21):6177

    Article  CAS  PubMed  Google Scholar 

  28. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) J Med Chem 47(7):1750

    Article  CAS  PubMed  Google Scholar 

  29. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) J Med Chem 47(7):1739

    Article  CAS  PubMed  Google Scholar 

  30. McGann M (2011) J Chem Inform Model 51(3):578

    Article  CAS  Google Scholar 

  31. Kelley BP, Brown SP, Warren GL, Muchmore SW (2015) J Chem Inf Model 55(8):1771

    Article  CAS  PubMed  Google Scholar 

  32. McGann M (2012) J Comput Aided Mol Des 26(8):897

    Article  CAS  PubMed  Google Scholar 

  33. Morris GM (2007) AutoDock. https://autodock.scripps.edu/. Accessed 2008

  34. Horvath D, Marcou G, Varnek A (2009) J Chem Inform Model 49(7):1762

    Article  CAS  Google Scholar 

  35. Jaworska J, Nikolova-Jeliazkova N, Aldenberg T (2005) ATLA Altern Lab Anim 33(5):445

    CAS  PubMed  Google Scholar 

  36. Brewerton SC (2008) Curr Opin Drug Discov Dev 11(3):356

    CAS  Google Scholar 

  37. Baroni M, Cruciani G, Sciabola S, Perruccio F, Mason JS (2007) J Chem Inform Model 47(2):279

    Article  CAS  Google Scholar 

  38. Marcou G, Rognan D (2007) J Chem Inform Model 47(1):195

    Article  CAS  Google Scholar 

  39. Choudhury N, Montgomery-Pettitt B (2007) J Am Chem Soc 129:4847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chandler D (2005) Nature 437(7059):640

    Article  CAS  PubMed  Google Scholar 

  41. Bohm HJ, Stahl M (2002) The use of scoring functions in drug discovery applications. Rev Comput Chem 18:41

    Google Scholar 

  42. Liu L, Yang C, Guo QX (2000) Biophys Chem 84:239

    Article  CAS  PubMed  Google Scholar 

  43. Hoffer L, Chira C, Marcou G, Varnek A, Horvath D (2015) Molecules (Basel Switz) 20(5):8997

    Article  CAS  Google Scholar 

  44. Hoffer L, Renaud J-P, Horvath D (2013) J Chem Inform Model 53(4):836

    Article  CAS  Google Scholar 

  45. Hoffer L, Horvath D (2012) J Chem Inform Model 53(1):88

    Article  CAS  Google Scholar 

  46. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, Debolt S, Ferguson D, Seibel G, Kollman P (1995) Comput Phys Commun 91(1–3):1

    Article  CAS  Google Scholar 

  47. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25(9):1157

    Article  CAS  PubMed  Google Scholar 

  48. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2011) Nucleic Acids Res 40(D1):D1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) J Med Chem 55(14):6582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sokolova M, Japkowicz N, Szpakowicz S (2006) Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. AAAI Workshop Tech Rep 2006:24

    Google Scholar 

  51. Schrödinger L (2005) Glide. LLC, New York

    Google Scholar 

  52. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Proteins Struct Funct Genet 52:609

    Article  CAS  PubMed  Google Scholar 

  53. Trott O, Olson Arthur J (2009) J Comput Chem 31(2):455

    Google Scholar 

  54. Sidorov P, Gaspar H, Marcou G, Varnek A, Horvath D (2015) J Comput Aided Mol Des 29(12):1087

    Article  CAS  PubMed  Google Scholar 

  55. Varnek A, Fourches D, Horvath D, Klimchuk O, Gaudin C, Vayer P, Solov’ev V, Hoonakker F, Tetko IV, Marcou G (2008) Curr Comput Aided Drug Des 4(3):191

    Article  CAS  Google Scholar 

  56. Horvath D, Brown J, Marcou G, Varnek A (2014) Challenges 5(2):450

    Article  Google Scholar 

  57. Pedretti A, Villa L, Vistoli G (2004) J Comput Aided Mol Des 18(3):167

    Article  CAS  PubMed  Google Scholar 

  58. Willett P, Barnard JM, Downs GM (1998) J Chem Inform Model 38:983

    CAS  Google Scholar 

  59. ChemAxon (2007) Tautomer plugin. ChemAxon, Budapest. http://www.chemaxon.com/marvin-archive/4.1.3/marvin/chemaxon/marvin/help/calculator-plugins.html#tautomer. Accessed Oct 2011.

  60. ChemAxon (2007) pKa calculator plugin. ChemAxon, Budapest. https://www.chemaxon.com/products/calculator-plugins/property-predictors/. Accessed Feb 2013

  61. ChemAxon (2014) Conformer plugin. ChemAxon, Budapest. https://docs.chemaxon.com/display/docs/Conformer+Plugin. Accessed 2018

  62. ChemAxon (2008) Calculation of partial charge distributions. ChemAxon, Budapest. http://www.chemaxon.com/marvin/help/calculations/charge.html. Accessed Feb 2009

  63. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossvary I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER 12. University of California, San Diego. http://ambermd.org/doc12/Amber12.pdf. Accessed Aug 2018

  64. Carhart ER, Smith DH, Venkataraghavan R (1985) J Chem Inform Comput Sci 25:64

    Article  CAS  Google Scholar 

  65. Laboratoire de Chemoinformatique Strasbourg (2012) Nomenclature of ISIDA fragments. Laboratory of Chemoinformatics, Strasbourg

    Google Scholar 

  66. Ruggiu F, Marcou G, Varnek A, Horvath D (2010) Mol Inform 29(12):855

    Article  CAS  PubMed  Google Scholar 

  67. Welch BL (1947) Biometrika 34:28

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the staff of the two computer centers which hosted the simulations: high-performance computing (HPC) of the University of Strasbourg and HPC of the chemistry faculty of Cluj-Napoca. AV thanks the Russian Science Foundation Grant No. 14-43-00052 for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragos Horvath.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (GZ 414 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhenin, M., Bahia, M.S., Marcou, G. et al. Rescoring of docking poses under Occam’s Razor: are there simpler solutions?. J Comput Aided Mol Des 32, 877–888 (2018). https://doi.org/10.1007/s10822-018-0155-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0155-5

Keywords

Navigation