Skip to main content
Log in

Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boutros R, Lobjois V, Ducommun B (2007) CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 7:495–507

    Article  CAS  Google Scholar 

  2. Munter SD, Köhn M, Bollen M (2013) Challenges and opportunities in the development of protein phosphatase-directed therapeutics. ACS Chem Biol 8:36 – 45

    Article  Google Scholar 

  3. Boutros R, Dozier C, Ducommun B (2006) The when and the wheres of CDC25 phosphatases. Curr Opin Cell Biol 18:185 – 191

    Article  CAS  Google Scholar 

  4. Van Vugt MA, Bras A, Medema RH (2004) Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell 15:799–811

    Article  Google Scholar 

  5. Bugler B, Quaranta M, Aressy B, Brezak MC, Prevost G, Ducommun B (2006) Genotoxic-activated G2-M checkpoint exit is dependent on CDC25B phosphatase expression. Mol Cancer Ther 5:1446–1451

    Article  CAS  Google Scholar 

  6. Neely KE, Piwnica-Worms H (2003) Cdc25A regulation: to destroy or not to destroy is that the only question? Cell Cycle 2:455–457

    Article  CAS  Google Scholar 

  7. Ferguson AM, White LS, Donovan PJ, Piwnica-Worms H (2005) Normal cell cycle and checkpoint responses in mice and cells lacking cdc25b and cdc25c protein phosphatases. Mol Cell Biol 25:2853–2860

    Article  CAS  Google Scholar 

  8. Guo JC, Kleeff J, Li JS, Ding JY, Hammer J, Zhao YP, Giese T, Korc M, Buchler MW, Friess H (2004) Expression and functional significance of CDC25B in human pancreatic ductal adenocarcinoma. Oncogene 23:71–81

    Article  Google Scholar 

  9. Contour-Galcera Marie-Odile, Sidhu A, Prévost G, Bigg D, Ducommun B (2007) What’s new on CDC25 phosphatase inhibitors. Pharmacol Ther 115:1–12

    Article  CAS  Google Scholar 

  10. Lavecchia A, Giovanni CD, Novellino E (2010) Inhibitors of Cdc25 phosphatases as anticancer agents: a patent review. Expert Opin Ther Patents 20:405–425

    Article  CAS  Google Scholar 

  11. Lavecchia A, Di Giovanni C, Novellino E (2009) Cdc25A and B dual-specifity phosphatase inhibitors: potential agents for cancer therapy. Curr Med Chem 16:1831–1849

    Article  CAS  Google Scholar 

  12. Lazo JS, Aslan DC, Southwick EC, Cooley KA, Ducruet AP, Joo B, Vogt A, Wipf P (2001) Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase cdc25. J Med Chem 44:4042–4049

    Article  CAS  Google Scholar 

  13. Guo JX, Parise RA, Joseph E, Lan J, Pan SS, Joo B, Egorin MJ, Wipf P, Lazo JS, Eiseman JL (2007) Pharmacology and antitumor activity of a quinolinedione cdc25 phosphatase inhibitor da3003-1 (NSC 663284). Anticancer Res 27:3067–3074

    CAS  Google Scholar 

  14. Lavecchia A, Giovanni CD, Pesapane A, Montuori N, Ragno P, Martucci NM, Masullo M, Vendittis ED, Novellino E (2012) Discovery of new inhibitors of cdc25b dual specificity phosphatases by structure-based virtual screening. J Med Chem 55:4142–4158

    Article  CAS  Google Scholar 

  15. Cossy J, Belotti D, Brisson M, Skoko JJ, Wipf P, Lazo JS (2006) Biological evaluation of newly synthesized quinoline-5,8-quinones as Cdc25B inhibitors. Bioorg Med Chem 14:6283 – 6287

    Article  CAS  Google Scholar 

  16. Wardman P (1990) Bioreductive activation of quinones: redox properties and thiol reactivity. Free Radic Res Commun 8:219–229

    Article  CAS  Google Scholar 

  17. Reynolds RA, Yem AW, Wolfe CL, Deibel MR Jr, Chidester CG, Watenpaugh KD (1999) Crystal Structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle. J Mol Biol 293:559–568

    Article  CAS  Google Scholar 

  18. Rudolph R (2007) Cdc25 phosphatases: structure, specificity, and mechanism. Biochem 46:3595–3603

    Article  CAS  Google Scholar 

  19. Buhrman G, Parker B, Sohn J, Rudolph J, Mattos C (2005) Structural mechanism of oxidative regulation of the phosphatase Cdc25B via an intramolecular disulfide bond. Biochem 44:5307–5316

    Article  CAS  Google Scholar 

  20. Jackson MD, Denu JM (2001) Molecular reactions of protein phosphatases: Insights from structure and chemistry. Chem Rev 101:2313–2340

    Article  CAS  Google Scholar 

  21. Lavecchia A, Cosconati S, Limongelli V, Novellino E (2006) Modeling of Cdc25B dual specifity protein phosphatase inhibitors: docking of ligands and enzymatic inhibition mechanism. ChemMedChem 1:540–550

    Article  CAS  Google Scholar 

  22. Brisson M, Nguyen T, Wipf P, Joo B, Day BW, Skoko JS, Schreiber EM, Foster C, Bansal P, Lazo JS (2005) Redox regulation of Cdc25B by cell-active quinolinediones. Mol Pharmacol 68:1810–1820

    CAS  Google Scholar 

  23. Arantes GM (2010) Flexibility and inhibitor binding in Cdc25 phosphatases. Proteins 78:3017–3032

    Article  CAS  Google Scholar 

  24. Park H, Carr BI, Li MH, Ham SW (2007) Fluorinated NSC as a Cdc25 inhibitor. Bioorg Med Chem Lett 17:2351–2354

    Article  CAS  Google Scholar 

  25. Ko S, Lee W, Lee S, Park H (2008) Nanosecond molecular dynamics simulations of Cdc25B and its complex with a 1,4-naphthoquinone inhibitor: Implications for rational inhibitor design. J Mol Graph Model 27:13–19

    Article  CAS  Google Scholar 

  26. Braud E, Goddard ML, Kolb S, Brun MP, Mondésert O, Quaranta M, Gresh N, Ducommun B, Garbay C (2008) Novel naphthoquinone and quinolinedione inhibitors of CDC25 phosphatase activity with antiproliferative properties. Bioorg Med Chem 16:9040–9049

    Article  CAS  Google Scholar 

  27. Lengauer T, Rareyt M (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6:402–406

    Article  CAS  Google Scholar 

  28. Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32:335–373

    Article  CAS  Google Scholar 

  29. Coupez B, Lewis RA (2006) Docking and scoring—theoretically easy, practically impossible? Curr Med Chem 13:2995–3003

    Article  CAS  Google Scholar 

  30. Software SYBYL (2008) Verison 8.1. Tripos Associates Inc., St. Louis

    Google Scholar 

  31. Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: automating pKa prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulation. Nucleic Acids Res 40:537–541

    Article  Google Scholar 

  32. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J Comput Chem 16:2785–2791

    Article  Google Scholar 

  33. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461

    CAS  Google Scholar 

  34. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of autodock. J Mol Recognition 9:1–5

    Article  CAS  Google Scholar 

  35. Vanquelef E, Simon S, Marquant G, Garcia E, Klimerak G, Delepine JC, Cieplak P, Dupradeau FY (2011) R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucl Acids Res 39:511–517

    Article  Google Scholar 

  36. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  37. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  38. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci 3:198–210

    Article  CAS  Google Scholar 

  39. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  40. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER 12. University of California, San Francisco

    Google Scholar 

  41. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  42. Seeber M, Cecchini M, Rao F, Settanni G, Caflisch A (2007) Wordom: a program for efficient analysis of molecular dynamics simulations. Bioinformatics 23:2625–2627

    Article  CAS  Google Scholar 

  43. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  44. Arantes GM (2008) The catalytic acid in the dephosphorylation of the Cdc2-pTpY/CycA protein complex by Cdc25B phosphatase. J Phys Chem B 112:15244–15247

    Article  CAS  Google Scholar 

  45. Fauman EB, Cogswell J, Lovejoy B, Rocque WJ, Holmes W, Montana VG, Piwnica-Worms H, Rink MJ, Saper MA (1998) Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A. Cell 93:617–625

    Article  CAS  Google Scholar 

  46. Lund G, Cierpicki T (2014) Solution NMR studies reveal no global flexibility in the catalytic domain of Cdc25B. Proteins 82:2889–2895

    Article  CAS  Google Scholar 

  47. Sayegh RSR, Tamaki FK, Marana SR, Salinas RK, Arantes GM (2016) Conformational flexibility of the complete catalytic domain of Cdc25B phosphatases. Proteins 84:1567–1575

    Article  CAS  Google Scholar 

  48. Lund G, Dudkin S, Borkin D, Ni W, Grembecka J, Cierpicki T (2014) Inhibition of CDC25B phosphatase through disruption of protein–protein interaction. ACS Chem Biol 10(2):390–394

    Article  Google Scholar 

  49. Pu L, Amoscato AA, Bier ME, Lazo JS (2002) Dual G1 and G2 phase inhibition by a novel, selective Cdc25 inhibitor 7-chloro-6-(2-morpholin-4-ylethylamino)-quinoline-5,8-dione. J Biol Chem 277:46877–46885

    Article  CAS  Google Scholar 

  50. Sohn J, Parks JM, Buhrman G, Brown P, Kristjansdottir K, Safi A, Edelsbrunner H, Yan WT, Rudolph J (2005) Experimental validation of the docking orientation of Cdc25 with its Cdk2-CycA protein substrate. Biochem 44:16563–16573

    Article  CAS  Google Scholar 

  51. Brisson M1, Nguyen T, Vogt A, Yalowich J, Giorgianni A, Tobi D, Bahar I, Stephenson CR, Wipf P, Lazo JS (2004) Discovery and characterization of novel small molecule inhibitors of human Cdc25B dual specificity phosphatase. Mol Pharmacol 66:824–833

    Article  CAS  Google Scholar 

  52. Lund G, Dudkin S, Borkin D, Ni W, Grembecka J, Cierpicki T (2015) Inhibition of CDC25B phosphatase through disruption of protein-protein interaction. ACS Chem Biol 10:390–394

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. C. J. Woods for helpful discussion and advice. YG and YL acknowledge financial support from National Science Found for Distinguished Young Scholars of China (21225313), Program for Changjiang Scholars and Innovative Research Team in University (IRT1030). Major State Special Research Project of China (2016YFA0101200), Major State Basic Research Development Program of China (973 Program, 2015CB553701), National Natural Science Foundation of China (NSFC, 21778050), Recruitment Program for Young Professionals (KJ2070000027). MWvdK and AJM thank BBSRC and EPSRC for support (EP/G007705/1; BB/L018756/1; BB/M026280).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yushu Ge, Yi Liu or Adrian J. Mulholland.

Additional information

The work was performed at the Centre of Computational Chemistry, School of Chemistry, University of Bristol.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8838 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., van der Kamp, M., Malaisree, M. et al. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations. J Comput Aided Mol Des 31, 995–1007 (2017). https://doi.org/10.1007/s10822-017-0073-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-017-0073-y

Keywords

Navigation