Skip to main content

Advertisement

Log in

Allosteric modulation model of the mu opioid receptor by herkinorin, a potent not alkaloidal agonist

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Modulation of opioid receptors is the primary choice for pain management and structural information studies have gained new horizons with the recently available X-ray crystal structures. Herkinorin is one of the most remarkable salvinorin A derivative with high affinity for the mu opioid receptor, moderate selectivity and lack of nitrogen atoms on its structure. Surprisingly, binding models for herkinorin are lacking. In this work, we explore binding models of herkinorin using automated docking, molecular dynamics simulations, free energy calculations and available experimental information. Our herkinorin D-ICM-1 binding model predicted a binding free energy of −11.52 ± 1.14 kcal mol−1 by alchemical free energy estimations, which is close to the experimental values −10.91 ± 0.2 and −10.80 ± 0.05 kcal mol−1 and is in agreement with experimental structural information. Specifically, D-ICM-1 molecular dynamics simulations showed a water-mediated interaction between D-ICM-1 and the amino acid H2976.52, this interaction coincides with the co-crystallized ligands. Another relevant interaction, with N1272.63, allowed to rationalize herkinorin’s selectivity to mu over delta opioid receptors. Our suggested binding model for herkinorin is in agreement with this and additional experimental data. The most remarkable observation derived from our D-ICM-1 model is that herkinorin reaches an allosteric sodium ion binding site near N1503.35. Key interactions in that region appear relevant for the lack of β-arrestin recruitment by herkinorin. This interaction is key for downstream signaling pathways involved in the development of side effects, such as tolerance. Future SAR studies and medicinal chemistry efforts will benefit from the structural information presented in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK (2012) Nature 485:400–404

    Article  CAS  Google Scholar 

  2. Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hubner H, Pardon E, Valant C, Sexton PM, Christopoulos A, Felder CC, Gmeiner P, Steyaert J, Weis WI, Garcia KC, Wess J, Kobilka BK (2013) Nature 504:101–106

    Article  CAS  Google Scholar 

  3. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Nature 485:321–326

    Article  CAS  Google Scholar 

  4. Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling RC, Granier S, Gmeiner P, Husbands SM, Traynor JR, Weis WI, Steyaert J, Dror RO, Kobilka BK (2015) Nature 524:315–321

    Article  CAS  Google Scholar 

  5. Sounier R, Mas C, Steyaert J, Laeremans T, Manglik A, Huang W, Kobilka BK, Demene H, Granier S (2015) Nature 524:375–378

    Article  CAS  Google Scholar 

  6. Mnpotra JS, Qiao Z, Cai J, Lynch DL, Grossfield A, Leioatts N, Hurst DP, Pitman MC, Song Z-H, Reggio PH (2014) J Biol Chem 289:20259–20272

    Article  CAS  Google Scholar 

  7. Brown MF (1994) Chem Phys Lipids 73:159–180

    Article  CAS  Google Scholar 

  8. Botelho AV, Huber T, Sakmar TP, Brown MF (2006) Biophys J 91: 4464–4477

    Article  CAS  Google Scholar 

  9. Jacobson KA (2015) Biochem Pharmacol in press

  10. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Trong IL, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Science 289: 739–745

    Article  CAS  Google Scholar 

  11. Okada T, Sugihara M, Bondar A-N, Elstner M, Entel P, Buss V (2004) J Mol Biol 342:571–583

    Article  CAS  Google Scholar 

  12. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H-J, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) Science 318: 1258–1265

    Article  CAS  Google Scholar 

  13. Rasmussen SGF, Choi H-J, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sanishvili R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK (2007) Nature 450:383–387

    Article  CAS  Google Scholar 

  14. Guindon J, Walczak J-S, Beaulieu P (2007) Drugs 67:2121–2133

    Article  CAS  Google Scholar 

  15. Law P-Y, Wong YH, Loh HH (2000) Annu Rev Pharmacol Toxicol 40:389–430

    Article  CAS  Google Scholar 

  16. Kane BE, Svensson B, Ferguson DM (2006) AAAPS J 8:E126–E137

    Article  CAS  Google Scholar 

  17. Eguchi M (2004) Med Res Rev 24:182–212

    Article  CAS  Google Scholar 

  18. Filizola M, Villar HO, Loew GH (2001) J Comput 15:297–307

    CAS  Google Scholar 

  19. Surratt CK, Johnson PS, Moriwaki A, Seidleck BK, Blaschak CJ, Wang JB, Uhl GR (1994) J Biol Chem 269:20548–20553

    CAS  Google Scholar 

  20. Pogozheva ID, Przydzial MJ, Mosberg HI (2005) AAAPS J 7:E434–E448

    Article  CAS  Google Scholar 

  21. Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han G, Xu Q, deWaal PW, Ke J, Tan MHE, Zhang C, Moeller A, West GM, Pascal BD, Eps NV, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Howe N, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JCH, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, Xu HE (2015) Nature 523:561–567

    Article  CAS  Google Scholar 

  22. Groer CE, Tidgewell K, Moyer RA, Harding WW, Rothman RB, Prisinzano TE, Bohn LM (2007) Mol Pharmacol 71:549–557

    Article  CAS  Google Scholar 

  23. Roth BL, Baner K, Westkaemper R, Siebert D, Rice KC, Steinberg S, Ernsberger P, Rothman RB (2002) Proc Natl Acad Sci USA 99:11934–11939

    Article  CAS  Google Scholar 

  24. Labute P, Williams C, Feher M, Sourial E, Schmidt JM (2001) J Med Chem 44:1483–1490

    Article  CAS  Google Scholar 

  25. Schapira M, Totrov M, Abgyan R (1999) J Mol Recognit 12:177–190

    Article  CAS  Google Scholar 

  26. Abagyan R, Kufareva I (2009) Methods Mol Biol 575:249–279

    Article  CAS  Google Scholar 

  27. An J, Totrov M, Abagyan R (2005) Mol Cell Proteom 4:752–761

    Article  CAS  Google Scholar 

  28. Abagyan R, Raush R, Totrov M (2013) ICM Manual v.3.7, MolSoft LLC, La Jolla

    Google Scholar 

  29. Wesson L, Eisenberg D (1992) Protein Sci 1:227–235

    Article  CAS  Google Scholar 

  30. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  31. Zhong H-J, Liu L-J, Chong C-M, Lu L, Wang M, Chan DS-H, Chan PWH, Lee SM-Y, Ma D-L, Leung C-H (2014) PLoS One 9:e92905

    Article  Google Scholar 

  32. Abagyan R, Totrov M (1994) J Mol Biol 235:983–1002

    Article  CAS  Google Scholar 

  33. Totrov M, Abagyan R (1997) Proteins 29(S1):215–220

    Article  Google Scholar 

  34. Totrov M, Abagyan R (1999) Derivation of sensitive discrimination potential for virtual ligand screening. In: Proceedings of the third annual international conference on Computational molecular biology. ACM, Lyon, pp 312–320

    Google Scholar 

  35. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) Nucleic Acids Res 42:W252–W258

    Article  CAS  Google Scholar 

  36. Arnold K, Bordoli L, Kopp J, Schwede T (2006) Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  37. Benkert P, Biasini M, Schwede T (2011) Bioinformatics 27:343–350

    Article  CAS  Google Scholar 

  38. Cheng J, Sun X, Li W, Liu G, Tu Y, Tang Y (2016) Sci Rep 6:18913

    Article  CAS  Google Scholar 

  39. Bartuzi D, Kaczor AA, Matosiuk D (2016) J Chem Inf Model 56:563–570

    Article  CAS  Google Scholar 

  40. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor RW (2010) J Phys Chem B 114:7830–7843

    Article  CAS  Google Scholar 

  41. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  42. Jo S, Kim T, Iyer VG, Im W (2008) J Comput Chem 29:1859–1865

    Article  CAS  Google Scholar 

  43. Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM, Qi Y, Lee J, Monje-Galvan V, Venable RM, Klauda JB, Im W (2014) J Comput Chem 35:1997–2004

    Article  CAS  Google Scholar 

  44. Jo S, Lim JB, Klauda JB, Im W (2009) Biophys J 97:50–58

    Article  CAS  Google Scholar 

  45. Jo S, Kim T, Im W (2007) PLoS One 2:e880

    Article  Google Scholar 

  46. Brooks BR, Brooks CL, MacKerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) J Comput Chem 30:1545–1614

    Article  CAS  Google Scholar 

  47. Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, Wei S, Buckner J, Jeong JC, Qi Y, Jo S, Pande VS, Case DA, Brooks CL, MacKerell AD, Klauda JB, Im W (2016) J Chem Theory Comput 12:405–413

    Article  CAS  Google Scholar 

  48. Tieleman DP, Forrest LR, Sansom MSP, Berendsen HJC (1998) BioChemistry 37:17554–17561

    Article  CAS  Google Scholar 

  49. Grossfield A, Pitman MC, Feller SE, Soubias O, Gawrisch K (2008) J Mol Biol 381:478–486

    Article  CAS  Google Scholar 

  50. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, MacKerell AD (2010) J Comput Chem 31:671–690

    CAS  Google Scholar 

  51. Vanommeslaeghe K, MacKerell AD (2012) J Chem Inf Model 52:3144–3154

    Article  CAS  Google Scholar 

  52. Vanommeslaeghe K, Raman EP, MacKerell AD (2012) J Chem Inf Model 52:3155–3168

    Article  CAS  Google Scholar 

  53. Klimovich PV, Shirts MR, Mobley DL (2015) J Comput Aided Mol Des 29:397–411

    Article  CAS  Google Scholar 

  54. Bennett CH (1976) J Comput Phys 22:245–268

    Article  Google Scholar 

  55. Roux B, Nina M, Pomès R, Smith JC (1996) Biophys J 71:670–681

    Article  CAS  Google Scholar 

  56. Paramo T, East A, Garzón D, Ulmschneider MB, Bond PJ (2014) J Chem Theory Comput 10:2151–2164

    Article  CAS  Google Scholar 

  57. Shirts MR, Mobley DL, Chodera JD, Pande VS (2007) J Phys Chem B 111:13052–13063

    Article  CAS  Google Scholar 

  58. Harding WW, Tidgewell K, Byrd N, Cobb H, Dersch CM, Butelman ER, Rothman RB, Prisinzano TE (2005) J Med Chem 48:4765–4771

    Article  CAS  Google Scholar 

  59. Yan F, Mosier PD, Westkaemper RB, Stewart J, Zjawiony JK, Vortherms TA, Sheffler DJ, Roth BL (2005) BioChemistry 44:8643–8651

    Article  CAS  Google Scholar 

  60. Kane BE, Nieto MJ, McCurdy CR, Ferguson DM (2006) FEBS J 273:1966–1974

    Article  CAS  Google Scholar 

  61. Ballesteros JA, Weinstein H (1995) [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428 (Ed Stuart C. S.). Academic Press

    Article  CAS  Google Scholar 

  62. Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW, Lee RE (2009) J Chem Inf Model 49:444–460

    Article  CAS  Google Scholar 

  63. Yongye AB, Bender A, Martinez-Mayorga K (2010) J Comput Aided Mol Des 24:675–686

    Article  CAS  Google Scholar 

  64. Joung JY, Nam K-Y, Cho K-H, No KT (2012) J Chem Inf Model 52:984–995

    Article  CAS  Google Scholar 

  65. Martinez-Mayorga K, Byler KG, Yongye AB, Giulianotti MA, Dooley CT, Houghten RA (2013) Eur J Med Chem 66:114–121

    Article  CAS  Google Scholar 

  66. Mansour A, Taylor LP, Fine JL, Thompson RC, Hoversten MT, Mosberg HI, Watson SJ, Akil H (1997) J Neurochem 68:344–353

    Article  CAS  Google Scholar 

  67. Fowler CB, Pogozheva ID, LeVine H, Mosberg HI (2004) BioChemistry 43:8700–8710

    Article  CAS  Google Scholar 

  68. Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC (2014) Trends Biochem Sci 39:233–244

    Article  CAS  Google Scholar 

  69. Xu H, Partilla J, Wang X, Rutherford J, Tidgewell K, Prisinzano T, Bohn L, Rothman R (2007) Synapse 61:166–175

    Article  CAS  Google Scholar 

  70. Ji F, Wang Z, Ma N, Riley J, Armstead WM, Liu R (2013) Brain Res 1490C:95–100

    Article  Google Scholar 

  71. Schiller PW, Nguyen TMD, Berezowska I, Dupuis S, Weltrowska G, Chung NN, Lemieux C (2000) Eur J Med Chem 35:895–901

    Article  CAS  Google Scholar 

  72. Mignat C, Wille U, Ziegler A (1995) Life Sci 56:793–799

    Article  CAS  Google Scholar 

  73. Iyer MR, Lee YS, Deschamps JR, Dersch CM, Rothman RB, Jacobson AE, Rice KC (2012) Eur J Med Chem 50:44–54

    Article  CAS  Google Scholar 

  74. Peng X, Knapp BI, Bidlack JM, Neumeyer JL (2007) J Med Chem 50:2254–2258

    Article  CAS  Google Scholar 

  75. Magnan J, Paterson SJ, Tavani A, Kosterlitz HW (1982) Naunyn-Schmiedeberg’s Arch Pharmacol 319:197–205

    Article  CAS  Google Scholar 

  76. Lewanowitsch T, Irvine R (2003) Brain Res 964:302–305

    Article  CAS  Google Scholar 

  77. Vortherms TA, Mosier PD, Westkaemper RB, Roth BL (2007) J Biol Chem 282:3146–3156

    Article  CAS  Google Scholar 

  78. Polepally PR, Huben K, Vardy E, Setola V, Mosier PD, Roth BL, Zjawiony JK (2014) Eur J Med Chem 85:818–829

    Article  CAS  Google Scholar 

  79. Bartuzi D, Kaczor AA, Matosiuk D (2015) J Chem Inf Model 55:2421–2434

    Article  CAS  Google Scholar 

  80. Johnson M, Maggiora GM (1990) Concepts and applications of molecular similarity. Wiley, New York

    Google Scholar 

  81. Maggiora GM (2006) J Chem Inf Model 46:1535–1535

    Article  CAS  Google Scholar 

  82. Yan F, Bikbulatov RV, Mocanu V, Dicheva N, Parker CE, Wetsel WC, Mosier PD, Westkaemper RB, Allen JA, Zjawiony JK, Roth BL (2009) BioChemistry 48:6898–6908

    Article  CAS  Google Scholar 

  83. Spivak CE, Beglan CL, Seidleck BK, Hirshbein LD, Blaschak CJ, Uhl GR, Surratt CK (1997) Mol Pharmacol 52: 983–992

    CAS  Google Scholar 

  84. Minami M, Nakagawa T, Seki T, Onogi T, Aoki Y, Katao Y, Katsumata S, Satoh M (1996) Mol Pharmacol 50:1413–1422

    CAS  Google Scholar 

  85. González-Andrade M, Rodríguez-Sotres R, Madariaga-Mazón A, Rivera-Chávez J, Mata R, Sosa-Peinado A, Pozo-Yauner LD, Arias-Olguín II (2016) J Biomol Struct Dyn 34:78–91

    Article  Google Scholar 

  86. Horstman DA, Brandon S, Wilson AL, Guyer CA CA, Cragoe EJ EJ, Limbird LE LE (1990) J Biol Chem 265:21590–21595

    CAS  Google Scholar 

  87. Neve KA, Cumbay MG, Thompson KR, Yang R, Buck DC, Watts VJ, DuRand CJ, Teeter MM (2001) Mol Pharmacol 60: 373

    CAS  Google Scholar 

  88. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, Ijzerman AP, Cherezov V, Stevens RC (2012) Science 337:232

    Article  CAS  Google Scholar 

  89. Shang Y, LeRouzic V, Schneider S, Bisignano P, Pasternak GW, Filizola M (2014) BioChemistry 53:5140–5149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KMM acknowledge Institute of Chemistry UNAM, for financial support. AFMV acknowledge CONACYT for scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Martínez-Mayorga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 378 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marmolejo-Valencia, A.F., Martínez-Mayorga, K. Allosteric modulation model of the mu opioid receptor by herkinorin, a potent not alkaloidal agonist. J Comput Aided Mol Des 31, 467–482 (2017). https://doi.org/10.1007/s10822-017-0016-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-017-0016-7

Keywords

Navigation