Skip to main content
Log in

Assessment of the tautomeric population of benzimidazole derivatives in solution: a simple and versatile theoretical–experimental approach

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Herein, we present a simple and versatile theoretical–experimental approach to assess the tautomeric distribution on 5(6)-aminobenzimidazole (5(6)-ABZ) derivatives in solution via one-photon absorption. The method is based on the optimized weighted sum of the theoretical spectra of the corresponding tautomers. In this article we show how the choice of exchange-correlation functional (XCF) employed in the calculations becomes crucial for the success of the approach. After the systematic analysis of XCFs with different amounts of exact-exchange we found a better performance for B3LYP and PBE0. The direct test of the proposed method on omeprazole, a well-known 5(6)-benzimidazole based pharmacotherapeutic, demonstrate its broader applicability. The proposed approach is expected to find direct applications on the tautomeric analysis of other molecular systems exhibiting similar tautomeric equilibria.

Graphical abstract

Using a weighted sum of the corresponding individual tautomer theoretical spectra, the tautomeric population of benzimidazole derivatives in solution and at room temperature is directly determined through the theoretical–experimental fitting of the UV–Vis spectra of the tautomeric mixture at equilibrium. The reliability of the proposed method is based on the existent spectral difference between the two species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brink NG, Folkers K (1949) J Am Chem Soc 71:2951

    Article  CAS  Google Scholar 

  2. Wright JB (1951) Chem Rev 48:397–541

    Article  CAS  Google Scholar 

  3. Preston PN (1974) Chem Rev 74:279–314

    Article  CAS  Google Scholar 

  4. Bansal Y, Silakari O (2012) Biorg Med Chem 20:6208–6236

    Article  CAS  Google Scholar 

  5. Kazimierczuk Z, Andrzejewska M, Kaustova J, Klimesova V (2005) Eur J Med Chem 40:203–208

    Article  CAS  Google Scholar 

  6. Richards ML, Lio SC, Sinha A, Tieu KK, Sircar JC (2004) J Med Chem 47:6451–6454

    Article  CAS  Google Scholar 

  7. Vijayakumar K, Ahamed AJ (2010) J Chem Pharm Res 2:215–224

    CAS  Google Scholar 

  8. Cheng J, Xie J, Luo X (2005) Bioorg Med Chem Lett 15:267–269

    Article  CAS  Google Scholar 

  9. Goker H, Ozden S, Yildiz S, Boykin DW (2005) Eur J Med Chem 40:1062–1069

    Article  Google Scholar 

  10. Boufatah N, Gellis A, Maldonado J, Vanelle P (2004) Tetrahedron 60:9131–9137

    Article  CAS  Google Scholar 

  11. Brandon DL, Binder RG, Bates AH, Montague WC (1994) J Agric Food Chem 42:1588–1594

    Article  CAS  Google Scholar 

  12. Desai KG, Desai KR (2006) Biorg Med Chem 14:8271–8279

    Article  CAS  Google Scholar 

  13. Eicher T, Hauptmann S (2003) The chemistry of heterocycles. Wiley-VCH, Weinheim

    Book  Google Scholar 

  14. Katritzky A, Hall CD, El-Gendy B-D, Draghici B (2010) J Comput Aided Mol Des 24:475–484

    Article  CAS  Google Scholar 

  15. Strazewski P (1988) Nucl Acids Res 16:9377–9398

    Article  CAS  Google Scholar 

  16. Guengerich FP (2006) Chem Rev 106:420–452

    Article  CAS  Google Scholar 

  17. Tothadi S, Bhogala BR, Gorantla AR, Thakur TS, Jetti RK, Desiraju GR (2012) Chem Asian J 7:330–342

    Article  CAS  Google Scholar 

  18. Cruz-Cabeza AJ, Groom CR (2011) CrystEngComm 13:93–98

    Article  CAS  Google Scholar 

  19. Angeles Garcia M, Claramunt RM, Solcan T, Milata V, Alkorta I, Elguero J (2009) Magn Reson Chem 47:100–104

    Article  CAS  Google Scholar 

  20. Claramunt RM, Lopez C, Alkorta I, Elguero J, Yang R, Schulman S (2004) Magn Reson Chem 42:712–714

    Article  CAS  Google Scholar 

  21. Houben L, Ramaekers R, Adamowicz L, Maes G (2004) Internet Electron J Mol Des 3:163–181

    CAS  Google Scholar 

  22. Brown TN, Mora-Diez N (2006) J Phys Chem B 110:9270–9279

    Article  CAS  Google Scholar 

  23. Zimmermann AE, Walters JK, Katona BG, Souney PE, Levine D (2001) Clin Ther 23:660–679; discussion 645

  24. Runge E, Gross EKU (1984) Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  25. Dierksen M, Grimme S (2006) J Chem Phys 124:174301

    Article  Google Scholar 

  26. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  27. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Phys Rev B: Condens Matter 37:785–789

    Article  CAS  Google Scholar 

  29. McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  30. Mennucci B, Tomasi J, Cammi R, Cheeseman JR, Frisch MJ, Devlin FJ, Gabriel S, Stephens PJ (2002) J Phys Chem A 106:6102–6113

    Article  CAS  Google Scholar 

  31. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  32. Perdew JP, Ernzerhof M, Burke K (1996) J Chem Phys 105:9982–9985

    Article  CAS  Google Scholar 

  33. Adamo C, Barone V (1997) Chem Phys Lett 274:242–250

    Article  CAS  Google Scholar 

  34. Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  35. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  36. Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109-1–234109-9

  37. Schönherr T (ed) (2004) Optical spectra and chemical bonding in transition metal complexes. Springer, New York

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford

  39. Caricato M, Trucks GW, Frisch MJ, Wiberg KB (2010) J Chem Theory Comput 7:456–466

    Article  Google Scholar 

  40. Caricato M, Trucks GW, Frisch MJ, Wiberg KB (2010) J Chem Theory Comput 6:370–383

    Article  CAS  Google Scholar 

  41. Jacquemin D, Wathelet V, Perpète EA, Adamo C (2009) J Chem Theory Comput 5:2420–2435

    Article  CAS  Google Scholar 

  42. Laurent AD, Jacquemin D (2013) Int J Quantum Chem 113:2019–2039

    Article  CAS  Google Scholar 

  43. Jacquemin D, Perpète EA, Scalmani G, Frisch MJ, Ciofini I, Adamo C (2007) Chem Phys Lett 448:3–6

    Article  CAS  Google Scholar 

  44. Ohishi H, In Y, Ishida T, Inoue M, Sato F, Okitsu M, Ohno T (1989) Acta Crystallogr Sect C 45:1921–1923

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Science Foundation through Grant Number CHE-0840431. The computing time provided by STOKES ARCC is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florencio E. Hernández.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz, C., Llovera, L., Echevarria, L. et al. Assessment of the tautomeric population of benzimidazole derivatives in solution: a simple and versatile theoretical–experimental approach. J Comput Aided Mol Des 29, 143–154 (2015). https://doi.org/10.1007/s10822-014-9810-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9810-7

Keywords

Navigation