Skip to main content
Log in

A functional feature analysis on diverse protein–protein interactions: application for the prediction of binding affinity

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Protein–protein interactions (PPIs) play crucial roles in diverse cellular processes. There are different types of PPIs based on the composition, affinity and whether the association is permanent or transient. Analyzing the diversity of PPIs at the atomic level is crucial for uncovering the key features governing the interactions involved in PPI. A systematic physico-chemical and conformational studies were implemented on interfaces involved in different PPIs, including crystal packing, weak transient heterodimers, weak transient homodimers, strong transient heterodimers and homodimers. The comparative analysis shows that the interfaces tend to be larger, less planar, and more tightly packed with the increase of the interaction strength. Meanwhile the strong interactions undergo greater conformational changes than the weak ones involving main chains as well as side chains. Finally, using 18 features derived from our analysis, we developed a support vector regression model to predict the binding affinity with a promising result, which further demonstrate the reliability of our studies. We believe this study will provide great help in more thorough understanding the mechanism of diverse PPIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bahadur RP, Chakrabarti P, Rodier F, Janin J (2004) A dissection of specific and non-specific protein–protein interfaces. J Mol Biol 336:943–955

    Article  CAS  Google Scholar 

  2. Bernauer J, Bahadur RP, Rodier F, Janin J, Poupon A (2008) DiMoVo: a Voronoi tessellation-based method for discriminating crystallographic and biological protein–protein interactions. Bioinformatics 24:652–658

    Article  CAS  Google Scholar 

  3. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  CAS  Google Scholar 

  4. Ponstingl H, Henrick K, Thornton JM (2000) Discriminating between homodimeric and monomeric proteins in the crystalline state. Proteins 41:47–57

    Article  CAS  Google Scholar 

  5. Zhu H, Domingues FS, Sommer I, Lengauer T (2006) Noxclass: prediction of protein–protein interaction types. BMC Bioinformatics 7:27

    Article  CAS  Google Scholar 

  6. Nooren IM, Thornton JM (2003) Diversity of protein–protein interactions. EMBO J 22:3486–3492

    Article  CAS  Google Scholar 

  7. Ozbabacan SE, Engin HB, Gursoy A, Keskin O (2011) Transient protein–protein interactions. Protein Eng 24:635–648

    Article  CAS  Google Scholar 

  8. Perkins JR, Diboun I, Dessailly BH, Lees JG, Orengo C (2010) Transient protein–protein interactions: structural, functional, and network properties. Structure 18:1233–1243

    Article  CAS  Google Scholar 

  9. Jones S, Thornton JM (1996) Principles of protein–protein interactions. Proc Natl Acad Sci USA 93:13–20

    Article  CAS  Google Scholar 

  10. Nooren IM, Thornton JM (2003) Structural characterisation and functional significance of transient protein–protein interactions. J Mol Biol 325:991–1018

    Article  CAS  Google Scholar 

  11. De S, Krishnadev O, Srinivasan N, Rekha N (2005) Interaction preferences across protein–protein interfaces of obligatory and non-obligatory components are different. BMC Struct Biol 5:15

    Article  Google Scholar 

  12. Guharoy M, Chakrabarti P (2007) Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in protein–protein interactions. Bioinformatics 23:1909–1918

    Article  CAS  Google Scholar 

  13. Dey S, Pal A, Chakrabarti P, Janin J (2010) The subunit interfaces of weakly associated homodimeric proteins. J Mol Biol 398:146–160

    Article  CAS  Google Scholar 

  14. La D, Kong M, Hoffman W, Choi YI, Kihara D (2013) Predicting permanent and transient protein–protein interfaces. Proteins 81:805–818

    Article  CAS  Google Scholar 

  15. Kastritis PL, Moal IH, Hwang H, Weng Z, Bates PA, Bonvin AM, Janin J (2011) A structure-based benchmark for protein–protein binding affinity. Protein Sci 20:482–491

    Article  CAS  Google Scholar 

  16. Wang R, Fang X, Lu Y, Wang S (2004) The PDBbind database: collection of binding affinities for protein–ligand complexes with three-dimensional structures. J Med Chem 47:2977–2980

    Article  CAS  Google Scholar 

  17. Bahadur RP, Chakrabarti P, Rodier F, Janin J (2003) Dissecting subunit interfaces in homodimeric proteins. Proteins 53:708–719

    Article  CAS  Google Scholar 

  18. Hubbard SJ, Thornton JM (1993) NACCESS: computer program. University College London, London

    Google Scholar 

  19. Ruvinsky AM, Kirys T, Tuzikov AV, Vakser IA (2011) Side-chain conformational changes upon protein–protein association. J Mol Biol 408:356–365

    Article  CAS  Google Scholar 

  20. Kortemme T, Baker D (2002) A simple physical model for binding energy hot spots in protein–protein complexes. Proc Natl Acad Sci USA 99:14116–14121

    Article  CAS  Google Scholar 

  21. Saha RP, Bahadur RP, Pal A, Mandal S, Chakrabarti P (2006) ProFace: a server for the analysis of the physicochemical features of protein–protein interfaces. BMC Struct Biol 6:11

    Article  Google Scholar 

  22. Gutteridge A, Thornton J (2004) Conformational change in substrate binding, catalysis and product release: an open and shut case? FEBS Lett 567:67–73

    Article  CAS  Google Scholar 

  23. Gutteridge A, Thornton J (2005) Conformational changes observed in enzyme crystal structures upon substrate binding. J Mol Biol 346:21–28

    Article  CAS  Google Scholar 

  24. Echols N, Milburn D, Gerstein M (2003) MolMovDB: analysis and visualization of conformational change and structural flexibility. Nucleic Acids Res 31:478–482

    Article  CAS  Google Scholar 

  25. Hayward S, Lee RA (2002) Improvements in the analysis of domain motions in proteins from conformational change: DynDom version 1.50. J Mol Graph Model 21:181–183

    Article  CAS  Google Scholar 

  26. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  27. Melo F, Feytmans E (1997) Novel knowledge-based mean force potential at atomic level. J Mol Biol 267:207–222

    Article  CAS  Google Scholar 

  28. Su Y, Zhou A, Xia X, Li W, Sun Z (2009) Quantitative prediction of protein–protein binding affinity with a potential of mean force considering volume correction. Protein Sci 18:2550–2558

    Article  CAS  Google Scholar 

  29. Böhm HJ (1998) Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J Comput Aided Mol Des 12:309–323

    Article  Google Scholar 

  30. Englebienne P, Moitessier N (2009) Docking ligands into flexible and solvated macromolecules. 4. Are popular scoring functions accurate for this class of proteins? J Chem Inf Model 49:1568–1580

    Article  CAS  Google Scholar 

  31. Oda A, Tsuchida K, Takakura T, Yamaotsu N, Hirono S (2006) Comparison of consensus scoring strategies for evaluating computational models of protein–ligand complexes. J Chem Inf Model 46:380–391

    Article  CAS  Google Scholar 

  32. Ballester PJ, Mitchell JB (2010) A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics 26:1169–1175

    Article  CAS  Google Scholar 

  33. Li XL, Zhu M, Li XL, Wang HQ, Wang SL (2012) Protein–protein binding affinity prediction based on an SVR ensemble. Intell Comput Technol 7389:145–151

    Article  Google Scholar 

  34. Janin J, Rodier F (1995) Protein–protein interaction at crystal contacts. Proteins 23:580–587

    Article  CAS  Google Scholar 

  35. Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein–protein recognition sites. J Mol Biol 285:2177–2198

    Article  CAS  Google Scholar 

  36. Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 13:323–330

    Article  CAS  Google Scholar 

  37. Obiero J, Pittet V, Bonderoff SA, Sanders DA (2010) Thioredoxin system from Deinococcus radiodurans. J Bacteriol 192:494–501

    Article  CAS  Google Scholar 

  38. Betts MJ, Sternberg MJ (1999) An analysis of conformational changes on protein–protein association: implications for predictive docking. Protein Eng 12:271–283

    Article  CAS  Google Scholar 

  39. Janin J, Chothia C (1990) The structure of protein–protein recognition sites. J Biol Chem 265:16027–16030

    CAS  Google Scholar 

  40. Chrencik JE, Brooun A, Recht MI, Kraus ML, Koolpe M, Kolatkar AR, Bruce RH, Martiny-Baron G, Widmer H, Pasquale EB, Kuhn P (2006) Structure and thermodynamic characterization of the EphB4/Ephrin-B2 antagonist peptide complex reveals the determinants for receptor specificity. Structure 14:321–330

    Article  CAS  Google Scholar 

  41. Grant BJ, Gorfe AA, McCammon JA (2010) Large conformational changes in proteins: signaling and other functions. Curr Opin Struct Biol 20:142–147

    Article  CAS  Google Scholar 

  42. Zhou P, Wang C, Tian F, Ren Y, Yang C, Huang J (2013) Biomacromolecular quantitative structure–activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein–protein binding affinity. J Comput Aided Mol Des 27:67–78

    Article  CAS  Google Scholar 

  43. Moal IH, Agius R, Bates PA (2011) Protein–protein binding affinity prediction on a diverse set of structures. Bioinformatics 27:3002–3009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (No. 20905054 and 21175095).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanzhi Guo or Menglong Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material S1 (DOC 306 kb)

Supplementary material S2 (XLSX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Guo, Y., Zhong, Y. et al. A functional feature analysis on diverse protein–protein interactions: application for the prediction of binding affinity. J Comput Aided Mol Des 28, 619–629 (2014). https://doi.org/10.1007/s10822-014-9746-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9746-y

Keywords

Navigation