Skip to main content

Advertisement

Log in

Red Earth, Green Glass, and Compositional Data: A New Procedure for Solid-State Elemental Characterization, Source Discrimination, and Provenience Analysis of Ochres

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

A Correction to this article was published on 09 March 2020

This article has been updated

Abstract

Ochres are a diverse category of naturally occurring iron-enriched earths and rocks, as well as iron oxide minerals, that derive their color from iron-containing chromophores and are suitable for use as pigments. Over the last two decades, provenience studies of archaeological ochres have grown from a rarity largely of interest only to specialists to an accepted and expected part of the archaeological science panoply. The most effective approach to distinguishing among sources of ochre and assigning archaeological pigments to their origin is multi-elemental characterization or “elemental fingerprinting.” In this study, we coupled a sample preparation method not previously used in ochre archaeometry with elemental fingerprinting by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and Electron Probe MicroAnalysis (EPMA). We present a procedure for lithium borate (LiBo) fusion of samples for solid-state analysis, optimized for use with ochres, and designed for the budget and laboratory equipment constraints faced by many professional and student archaeologists. This method development research is part of the broader project “OLKARIA: Ochre Landscapes of Kenya – Anthropological Research and Iron-oxide Archaeometry,” which seeks in part to characterize the elemental composition of all known geologic ochre sources in the Kenya Rift Valley. Using a subset of project OLKARIA samples prepared by LiBo fusion and measured with LA-ICP-MS and EPMA, we successfully distinguished among six geologic ochre sources and a sample of commercially available iron oxide pigment. Our ability to uphold the Provenience Postulate for this data set compared favorably with source discrimination analyses done using data from Neutron Activation Analysis (NAA) of whole ochre for the same samples. LiBo fusion presents potential solutions to some criticisms of solid-state analysis of ochre using beam techniques, including issues arising from mineralogical heterogeneity, variable surface topography, the presence of free and chemically bound water, and the lack of matrix-matched standard reference materials. We also address the challenges of applying compositional data analysis best practices to ochre with an emphasis on the issues of rounded zero replacement and multivariate normality and highlight the work that remains to be done in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 09 March 2020

    The Online First version of this article unfortunately contained an error in the dimensions of LiBo fused bead shards described in the section “Lithium Borate Fusion Methods”.

References

  • Aitchison, J. (1984). The statistical analysis of geochemical compositions. Mathematical Geology, 16, 531–564.

    Google Scholar 

  • Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Monographs on Statistics and Applied Probability. London, Chapman, & Hall Ltd.

  • Arocena, J. M., Hall, K., & Meiklejohn, I. (2008). Minerals provide tints and possible binder/extender in pigments in san rock paintings (South Africa). Geoarchaeology, 23, 293–304.

    Google Scholar 

  • Audouin, F., & Plisson, H. (1982). Les ocres et leurs témoins au Paléolithique en France: Enquête et expériences sur leur validité archéologique. Cahiers du Centre de Recherches Préhistoriques Paris, 8, 33–80.

    Google Scholar 

  • Baxter, M. J. (1994). Exploratory Multivariate Analysis in Archaeology. Edinburgh: Edinburgh University Press.

  • Brandt, S. A., & Weedman, K. (2002). Woman the toolmaker: a day in the life of an Ethiopian woman who scrapes hides the old-fashioned way. Archaeology, 55, 50–53.

    Google Scholar 

  • Brooks, A. S., Yellen, J. E., Potts, R., Behrensmeyer, A. K., Deino, A. L., Leslie, D. E., Ambrose, S. H., Ferguson, J. R., d’Errico, F., Zipkin, A. M., & Whittaker, S. (2018). Long-distance stone transport and pigment use in the earliest middle stone age. Science, 360(6384), 90–94.

    Google Scholar 

  • Brown, R. J., & Milton, M. J. (2005). Analytical techniques for trace element analysis: an overview. TrAC Trends in Analytical Chemistry, 24, 266–274.

    Google Scholar 

  • Buxeda i Garrigós, J. (2018). Compositional data analysis. In S. L. López Varela (Ed.), The Encyclopedia of Archaeological Sciences. https://doi.org/10.1002/9781119188230.saseas0103.

  • Chalmin, E., & Huntley, J. (2017). Characterizing rock art pigments. In D. David & I. J. McNiven (Eds.), The Oxford Handbook of the Archaeology and Anthropology of Rock Art (pp. 1–38). New York: Oxford University Press.

  • Chamberlain, N. (2006). Report on the rock art of south west Samburu District, Kenya. Azania, 41, 139–157.

    Google Scholar 

  • Chaptal, M. (1809). Notice sur quelques couleurs trouvées à Pompeïa. Mémoires de la Classe des Sciences Mathématiques et Physiques de l’Institut de France Année, 1808-1809(1809), 229–235.

    Google Scholar 

  • Claisse, F. (1957). Accurate X-ray fluorescence analysis without internal standards. Norelco Reporter, 4, 3–7.

    Google Scholar 

  • Claisse, F. (2003). Fusion and fluxes. In Z. Mester & R. Sturgeon (Eds.), Comprehensive Analytical Chemistry XLI (pp. 301–311). Amsterdam: Elsevier.

  • Claisse, F., & Blanchette, J. S. (2004). Physics and Chemistry of Borate Fusion: Theory and Application (3rd ed.). Quebec: Katanax Inc..

  • Cornell, R. M., & Schwertmann, U. (2003). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (2nd ed.). Weinheim: Wiley-VCH.

  • d’Errico, F., Bouillot, L. D., García-Diez, M., Martí, A. P., Pimentel, D. G., & Zilhão, J. (2016). The technology of the earliest European cave paintings: El Castillo Cave, Spain. Journal of Archaeological Science, 70, 48–65.

    Google Scholar 

  • Dart, R. A. (1968). The multimillennial prehistory of ochre mining. Native Affairs Department Annual, 9(7), 7–13.

    Google Scholar 

  • Davy, H. (1815). Some experiments and observations on the colours used in painting by the ancients. Philosophical Transactions of the Royal Society of London, 105, 97–124.

    Google Scholar 

  • Dayet, L., d'Errico, F., & Garcia-Moreno, R. (2014). Searching for consistencies in Châtelperronian pigment use. Journal of Archaeological Science, 44, 180–193.

    Google Scholar 

  • Dayet, L., Le Bourdonnec, F. X., Daniel, F., Porraz, G., & Texier, P.-J. (2016). Ochre provenance and procurement strategies during the middle stone age at Diepkloof Rock Shelter, South Africa. Archaeometry, 57(5), 807–829.

    Google Scholar 

  • Dizé, M. J. J. (1790). Analyse du cuivre, avec lequel les Anciens fabriquoient leurs Médailles, les instruments tranchans. Observations sur la Physique, sur l’Histoire Naturelle et sur les Arts, 36, 272–276.

    Google Scholar 

  • Eggins, S. M. (2003). Laser ablation ICP-MS analysis of geological materials prepared as lithium borate glasses. Geostandards and Geoanalytical Research, 27(2), 147–162.

    Google Scholar 

  • Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3), 279–300.

    Google Scholar 

  • Eiselt, B. S., Popelka-Filcoff, R. S., Darling, A., & Glascock, M. D. (2011). Hematite sources and archaeological ochres from Hohokam and O'odham sites in Central Arizona: an experiment in type identification and characterization. Journal of Archaeological Science, 38(11), 3019–3028.

    Google Scholar 

  • Ellis, L. W., Caran, S. C., Glascock, M. D., Tweedy, S. W., & Neff, H. (1997). Appendix H: Geochemical and Mineralogical Characterization of Ocher from an Archaeological Context. In S. L. Black, L. W. Ellis, D. G. Creel, & G. T. Goode (Eds.), Hot Rock Cooking on the Greater Edwards Plateau: Four Burned Rock Midden Sites in West Central Texas (pp. 660–678). Austin: Texas Archeological Research Laboratory, University of Texas at Austin.

  • Falcone, R., Renier, A., & Verita, M. (2002). Wavelength-dispersive X-ray fluorescence analysis of ancient glasses. Archaeometry, 44(4), 531–542.

    Google Scholar 

  • Farnsworth, M. (1951). Ancient pigments: particularly second century BC pigments from Corinth. Journal of Chemical Education, 28, 72–76.

  • Frahm, E. (2014). What constitutes an obsidian “source”?: Landscape and geochemical considerations and their archaeological implications. In C. Dillian (Ed.), Twenty-Five Years on the Cutting Edge of Obsidian Studies (pp. 49–70). International Association for Obsidian Studies.

  • Froment, F., Tournié, A., & Colomban, P. (2008). Raman identification of natural red to yellow pigments: ochre and iron-containing ores. Journal of Raman Spectroscopy, 39, 560–568.

    Google Scholar 

  • Fry, J. M., Fry, T. R., & McLaren, K. R. (2000). Compositional data analysis and zeros in micro data. Applied Economics, 32(8), 953–959.

    Google Scholar 

  • Geertz, C. (1973). The Interpretation of Cultures. New York: Basic Books.

  • Gerlach, R. W., & Nocerino, J. M. (2004). Guidance for obtaining representative laboratory analytical subsamples from particulate laboratory samples. US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Environmental Sciences Division. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=2000GTWM.txt. Accessed 6 Nov 2018.

  • Glascock, M. D. (1992). Characterization of archaeological ceramics at MURR by neutron activation analysis and multivariate statistics. In H. Neff (Ed.), Chemical Characterization of Ceramic Pastes in Archaeology (pp. 11–26). Madison: Prehistory Press.

  • Glascock, M. D., & Neff, H. (2003). Neutron activation analysis and provenance research in archaeology. Measurement Science and Technology, 14(9), 1516–1526.

    Google Scholar 

  • Gosden, C., & Marshall, Y. (1999). The cultural biography of objects. World Archaeology, 31(2), 169–178.

    Google Scholar 

  • Gray, A. L. (1985). Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst, 110, 551–556.

    Google Scholar 

  • Gregoricka, L. A. (2014). Assessing life history from commingled assemblages: the biogeochemistry of inter-tooth variability in Bronze Age Arabia. Journal of Archeological Science, 47, 10–21.

    Google Scholar 

  • Günther, D., Quadt, A. V., Wirz, R., Cousin, H., & Dietrich, V. J. (2001). Elemental analyses using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) of geological samples fused with Li2B4O7 and calibrated without matrix-matched standards. Microchimica Acta, 136(3–4), 101–107.

    Google Scholar 

  • Gy, P. M. (1998). Sampling for Analytical Purposes. Chichester: Wiley.

  • Harbottle, G. (1976). Activation analysis in archaeology. In G. W. A. Newton (Ed.), Radiochemistry: a specialist periodical report (pp. 33–72). London: The Chemical Society.

    Google Scholar 

  • Helsel, D. R. (2012). Statistics for censored environmental data using Minitab and R. Hoboken: John Wiley, & Sons.

  • Henshilwood, C. S., d'Errico, F., & Watts, I. (2009). Engraved ochres from the middle stone age levels at Blombos Cave, South Africa. Journal of Human Evolution, 57(1), 27–47.

    Google Scholar 

  • Henze, N., & Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality. Communications in Statistics - Theory and Methods, 19, 3595–3618.

    Google Scholar 

  • Hovers, E., Ilani, S., Bar-Yosef, O., & Vandermeersch, B. (2003). An early case of color symbolism: ochre use by modern humans in Qafzeh Cave. Current Anthropology, 44(4), 491–511.

    Google Scholar 

  • Huntley, J. (2012). Taphonomy or paint recipe: in situ portable x-ray fluorescence analysis of two anthropomorphic motifs from the Woronora Plateau, New South Wales. Australian Archaeology, 75(1), 78–94.

    Google Scholar 

  • Ichikawa, S., & Nakamura, T. (2014). X-ray fluorescence analysis with micro glass beads using milligram-scale siliceous samples for archeology and geochemistry. Spectrochimica Acta Part B: Atomic Spectroscopy, 96, 40–50.

    Google Scholar 

  • Jochum, K. P., & Stoll, B. (2008). Reference materials for elemental and isotopic analyses by LA-(MC)-ICP-MS: Successes and outstanding needs. In P. Sylvester (Ed.), Laser ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues (pp. 147–168). Quebec: Mineralogical Association of Canada.

  • Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., & Hofmann, A. W. (2005). GeoReM: a new geochemical database for reference materials and isotopic standards. Geostandards and Geoanalytical Research, 29(3), 333–338.

    Google Scholar 

  • Jochum, K. P., Wilson, S. A., Becker, H., Garbe-Schönberg, D., Groschopf, N., Kadlag, Y., Macholdt, D. S., Mertz-Kraus, R., Otter, L. M., Stoll, B., & Stracke, A. (2016). FeMnOx-1: A new microanalytical reference material for the investigation of Mn–Fe rich geological samples. Chemical Geology, 432, 34–40.

    Google Scholar 

  • Joyce, R. (2012). From place to place: provenience, provenance, and archaeology. In G. Feigenbaum & I. Reist (Eds.), Provenance. An Alternate History of Art (pp. 50–62). Los Angeles: Getty Research Institute.

  • Joyce, R. (2013). When is authentic? Situating authenticity in the itineraries of objects. In A. Guerds & L. Van Broekhoven (Eds.), Creating Authenticity. Authentication Processes in Ethnographic Museums (pp. 39–58). Leiden: Sidestone Press.

  • Kane, J. S., Siems, D. F., & Arbogast, B. F. (1992). Geochemical exploration reference samples GXR–1 to GXR–4 and GXR–6: evaluation of homogeneity based on high precision analyses. Geostatistics Newsletter, 16, 45–54.

    Google Scholar 

  • Kiehn, A. V., Brook, G. A., Glascock, M. D., Dake, J. Z., Robbins, L. H., & Campbell, A. C. (2007). Fingerprinting specular hematite from mines in Botswana, Southern Africa. In M. Glascock, R. J. Speakman, & R. S. Popelka-Filcoff (Eds.), Archaeological Chemistry: Analytical Techniques and Archaeological Interpretation (pp. 460–479). Washington: American Chemical Society.

  • Killick, D. (2015). The awkward adolescence of archaeological science. Journal of Archaeological Science, 56, 242–247.

    Google Scholar 

  • Kingery-Schwartz, A., Popelka-Filcoff, R. S., Lopez, D. A., Pottier, F., Hill, P., & Glascock, M. (2013). Analysis of geological ochre: its geochemistry, use, and exchange in the US Northern Great Plains. Open Journal of Archaeometry, 1, e15.

    Google Scholar 

  • Klaproth, M. H. (1798). Mémoire de numismatique docimastique. Mémoires de l’Academie Royale des Sciences et Belles-Lettres. Classe de Philosophie Expérimentale, 97–113.

  • Korkmaz, S., Goksuluk, D., & Zararsiz, G. (2014). MVN: an R package for assessing multivariate normality. The R Journal, 6(2), 151–162.

    Google Scholar 

  • Longerich, H. P., Jackson, S. E., & Günther, D. (1996). Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry, 11, 899–904.

    Google Scholar 

  • Lowe, D. J., Pearce, N. J., Jorgensen, M. A., Kuehn, S. C., Tryon, C. A., & Hayward, C. L. (2017). Correlating tephras and cryptotephras using glass compositional analyses and numerical and statistical methods: Review and evaluation. Quaternary Science Reviews, 175, 1–44.

    Google Scholar 

  • MacDonald, B. L., Hancock, R. G. V., Cannon, A., McNeill, F., Reimer, R., & Pidruczny, A. (2013). Elemental analysis of ochre outcrops in southern British Columbia, Canada. Archaeometry, 55(6), 1020–1033.

    Google Scholar 

  • MacDonald, B. L., Fox, W., Dubreuil, L., Beddard, J., & Pidruczny, A. (2018). Iron oxide geochemistry in the Great Lakes region (North America): Implications for ochre provenance studies. Journal of Archaeological Science: Reports, 19, 476–490.

    Google Scholar 

  • Mackay, A., & Welz, A. (2008). Engraved ochre from a middle stone age context at Klein Kliphuis in the Western Cape of South Africa. Journal of Archaeological Science, 35, 1521–1532.

    Google Scholar 

  • Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519–530.

    Google Scholar 

  • Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies. Sankhya, 36, 115–128.

    Google Scholar 

  • Martín-Fernández, J. A., Barceló-Vidal, C., & Pawlowsky-Glahn, V. (2000). Zero replacement in compositional data sets. In H. Kiers, J. Rasson, P. Groenen, & M. Shader (Eds.), Data analysis, classification, and related methods (pp. 155–160). Berlin: Springer-Verlag.

  • Martín-Fernández, J. A., Barceló-Vidal, C., & Pawlowsky-Glahn, V. (2003). Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Mathematical Geology, 35, 253–278.

    Google Scholar 

  • Mathis, F., Bodu, P., Dubreuil, O., & Salomon, H. (2014). PIXE identification of the provenance of ferruginous rocks used by Neanderthals. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 331, 275–279.

    Google Scholar 

  • Mills, P. R., Lundblad, S. P., Smith, J. G., McCoy, P. C., & Naleimaile, S. P. (2008). Science and sensitivity: a geochemical characterization of the Mauna Kea adze quarry complex, Hawai'i Island, Hawaii. American Antiquity, 73(4), 743–758.

    Google Scholar 

  • Ministry of Energy and Regional Development of Kenya (1987). Geological map of Kenya, scale 1:1,000,000. Nairobi.

  • Moens, L., & Dams, R. (1995). NAA and ICP-MS: a comparison between two methods for trace and ultra-trace element analysis. Journal of Radioanalytical and Nuclear Chemistry, 192, 29–38.

    Google Scholar 

  • Moyo, S., Mphuthi, D., Cukrowska, E., Henshilwood, C. S., van Niekerk, K., & Chimuka, L. (2016). Blombos Cave: middle stone age ochre differentiation through FTIR, ICP OES, ED XRF and XRD. Quaternary International, 404(B), 20–29.

    Google Scholar 

  • Nakamura, K. (2005). Adornments of the Samburu in Northern Kenya: a comprehensive list. Kyoto: Center for African Area Studies, Kyoto University.

  • Nakayama, K., Ichikawa, S., & Nakamura, T. (2012). Glass bead with minimized amount (11 mg) of sample for X-ray fluorescence determination of archaeological ceramics. X-Ray Spectrometry, 41(1), 16–21.

    Google Scholar 

  • Neff, H. (2000). Neutron activation analysis for provenance determination in archaeology. In E. Ciliberto & G. Spoto (Eds.), Modern Analytical Methods in Art and Archaeology. Chemical Analysis Series (Vol. 155, pp. 81–133). New York: John Wiley, & Sons.

  • Nesbitt, R. W., Hirata, T., Butler, I. B., & Milton, J. A. (1997). UV laser ablation ICP-MS: some applications in the earth sciences. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 20(2), 231–243.

    Google Scholar 

  • Palarea-Albaladejo, J., & Martin-Fernandez, J. A. (2013). Values below detection limit in compositional chemical data. Analytica Chimica Acta, 764, 32–43.

    Google Scholar 

  • Palarea-Albaladejo, J., Martín-Fernández, J. A., & Buccianti, A. (2014). Compositional methods for estimating elemental concentrations below the limit of detection in practice using R. Journal of Geochemical Exploration, 141, 71–77.

    Google Scholar 

  • Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508–2518.

    Google Scholar 

  • Pearson, G. (1796). Observations on some ancient metallic arms and utensils; with experiments to determine their composition. Philosophical Transactions of the Royal Society of London, 86, 395–451.

    Google Scholar 

  • Pollard, A. M., & Heron, C. (2008). Archaeological Chemistry (2nd ed.). Cambridge: The Royal Society of Chemistry.

  • Pollard, A. M., Batt, C. M., Stern, B., & Young, S. M. M. (2007). Analytical Chemistry in Archaeology. Cambridge: Cambridge University Press.

  • Pollard, A. M., Bray, P. J., & Gosden, C. (2014). Is there something missing in scientific provenance studies of prehistoric artefacts? Antiquity, 88, 625–631.

    Google Scholar 

  • Popelka-Filcoff, R. S. (2006). Applications of elemental analysis for archaeometric studies: analytical and statistical methods for understanding geochemical trends in ceramics, ochre and obsidian. Doctoral dissertation: University of Missouri-Columbia.

    Google Scholar 

  • Popelka-Filcoff, R. S., Robertson, J. D., Glascock, M. D., & Descantes, C. (2007). Trace element characterization of ochre from geological sources. Journal of Radioanalytical and Nuclear Chemistry, 272, 17–27.

    Google Scholar 

  • Popelka-Filcoff, R. S., Miksa, E. J., Robertson, J. D., Glascock, M. D., & Wallace, H. (2008). Elemental analysis and characterization of ochre sources from southern Arizona. Journal of Archaeological Science, 35, 752–762.

    Google Scholar 

  • Popelka-Filcoff, R. S., Lenehan, C. E., Glascock, M. D., Bennett, J. W., Stopic, A., Quinton, J. S., Pring, A., & Walshe, K. (2012). Evaluation of relative comparator and k0-NAA for characterization of aboriginal Australian ochre. Journal of Radioanalytical and Nuclear Chemistry, 291(1), 19–24.

    Google Scholar 

  • Prendergast, M. E., & Sawchuk, E. (2018). Boots on the ground in Africa's ancient DNA ‘revolution’: archaeological perspectives on ethics and best practices. Antiquity, 92(363), 803–815.

    Google Scholar 

  • Price, T. D., & Burton, J. H. (2011). An Introduction to Archaeological Chemistry. New York: Springer Science & Business Media.

  • Renfrew, C. (1977). Alternative models for exchange and spatial distribution. In T. K. Earle & J. E. Ericson (Eds.), Exchange Systems in Prehistory (pp. 71–90). New York: Academic Press.

    Google Scholar 

  • Rifkin, R. F. (2015). Ethnographic and experimental perspectives on the efficacy of ochre as a mosquito repellent. The South African Archaeological Bulletin, 70, 64–75.

    Google Scholar 

  • Rifkin, R. F., Dayet, L., Queffelec, A., Summers, B., Lategan, M., & d’Errico, F. (2015). Evaluating the photoprotective effects of ochre on human skin by in vivo SPF assessment: implications for human evolution, adaptation and dispersal. PLoS One, 10, e0136090.

    Google Scholar 

  • Royston, J. P. (1982). An extension of Shapiro and Wilk’s W test for normality in large samples. Applied Statistics, 31, 115–124.

    Google Scholar 

  • Royston, J. P. (1983). Some techniques for assessing multivariate normality based on the Shapiro–Wilk W. Applied Statistics, 32, 121–133.

    Google Scholar 

  • Russ, J., Bu, K., Hamrick, J., & Cizdziel, J. V. (2012). Laser ablation-inductively coupled plasma-mass spectrometry analysis of lower Pecos rock paints and possible pigment sources. In P. L. Lang & R. A. Armitage (Eds.), ACS Symposium Series Volume 1103: Collaborative Endeavors in the Chemical Analysis of Art and Cultural Heritage Materials (pp. 91–121). Washington: American Chemical Society.

  • Saitoti, T. O. (1993). Maasai. New York: Abradale Press.

    Google Scholar 

  • Sajó, I. E., Kovács, J., Fitzsimmons, K. E., Jáger, V., Lengyel, G., Viola, B., Talamo, S., & Hublin, J. J. (2015). Core-shell processing of natural pigment: Upper Palaeolithic red ochre from Lovas, Hungary. PLoS One, 10, e0131762.

    Google Scholar 

  • Sanford, R. F., Pierson, C. T., & Crovelli, R. A. (1993). An objective replacement method for censored geochemical data. Mathematical Geology, 25, 59–80.

    Google Scholar 

  • Scadding, R., Winton, V., & Brown, V. (2015). An LA-ICP-MS trace element classification of ochres in the Weld Range environ, Mid West region, Western Australia. Journal of Archaeological Science, 54, 300–312.

  • Scheid, N., Becker, S., Dücking, M., Hampel, G., Kratz, J. V., Watzke, P., Weis, P., & Zauner, S. (2009). Forensic investigation of brick stones using instrumental neutron activation analysis (INAA), laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) and X-ray fluorescence analysis (XRF). Applied Radiation and Isotopes, 67(12), 2128–2132.

    Google Scholar 

  • Skala, W. (1979). Some effects of the constant-sum problem in geochemistry. Chemical Geology, 27, 1–9.

    Google Scholar 

  • Smith, M. A., Fankhauser, B., & Jercher, M. (1998). The changing provenance of red ochre at Puritjarra rock shelter, Central Australia: Late Pleistocene to present. Proceedings of the Prehistoric Society, 64, 275–292.

    Google Scholar 

  • Sylvester, P. J., & Jackson, S. E. (2016). A brief history of laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Elements, 12, 307–310.

    Google Scholar 

  • Thackeray, A. I., Thackeray, J. F., & Beaumont, P. B. (1983). Excavations at the Blinkklipkop specularite mine near Postmasburg, Northern Cape. South African Archaeological Bulletin, 38, 17–25.

    Google Scholar 

  • Thío-Henestrosa, S., & Martín-Fernández, J. A. (2005). Dealing with compositional data: the freeware CoDaPack. Mathematical Geology, 37, 773–793.

    Google Scholar 

  • Trinkaus, E., & Buzhilova, A. P. (2018). Diversity and differential disposal of the dead at Sunghir. Antiquity, 92(361), 7–21.

    Google Scholar 

  • Velliky, E. C., Barbieri, A., Porr, M., Conard, N. J., & MacDonald, B. L. (2019). A preliminary study on ochre sources in Southwestern Germany and its potential for ochre provenance during the Upper Paleolithic. Journal of Archaeological Science: Reports, 27, 101977.

    Google Scholar 

  • Wadley, L. (2005). Putting ochre to the test: replication studies of adhesives that may have been used for hafting tools in the middle stone age. Journal of Human Evolution, 49(5), 587–601.

    Google Scholar 

  • Weigand, P. C., Harbottle, G., & Sayre, E. V. (1977). Turquoise sources and source analysis: Mesoamerican and the southwestern U.S.A. In T. K. Earle & J. E. Ericson (Eds.), Exchange Systems in Prehistory (pp. 15–34). New York: Academic Press.

    Google Scholar 

  • Williamson, R. F., & Pfeiffer, S. (2003). Bones of the ancestors: the archaeology and osteobiography of the Moatfield ossuary. Mercury Series, 163. Gatineau: Canadian Museum of Civilization.

  • Wilson, L., & Pollard, A. M. (2001). The provenance hypothesis. In D. R. Brothwell & A. M. Pollard (Eds.), Handbook of Archaeological Sciences (pp. 507–517). Chichester: John Wiley, & Sons.

  • Wreschner, E. E., Bolton, R., Butzer, K. W., Delporte, H., Häusler, A., Heinrich, A., Jacobson-Widding, A., Malinowski, T., Masset, C., Miller, S. F., Ronen, A., Solecki, R., Stephenson, P. H., Thomas, L. L., & Zollinger, H. (1980). Red ochre and human evolution: a case for discussion [and comments and reply]. Current Anthropology, 21, 631–644.

    Google Scholar 

  • Zhu, T., Sun, W., Zhang, H., Wang, H., Kuang, G., & Lv, L. (2012). Study on the provenance of Xicun Qingbai wares from the northern Song dynasty of China. Archaeometry, 54(3), 475–488.

    Google Scholar 

  • Zipkin, A. M., Wagner, M., McGrath, K., Brooks, A. S., & Lucas, P. W. (2014). An experimental study of hafting adhesives and the implications for compound tool technology. PLoS One, 9, e112560.

    Google Scholar 

  • Zipkin, A. M., Hanchar, J. M., Brooks, A. S., Grabowski, M. W., Thompson, J. C., & Gomani-Chindebvu, E. (2015). Ochre fingerprints: distinguishing among Malawian mineral pigment sources with homogenized ochre chip LA–ICPMS. Archaeometry, 57(2), 297–317.

  • Zipkin, A. M., Ambrose, S. H., Hanchar, J. M., Piccoli, P. M., Brooks, A. S., & Anthony, E. Y. (2017). Elemental fingerprinting of Kenya Rift Valley ochre deposits for provenance studies of rock art and archaeological pigments. Quaternary International, 430, 42–59.

    Google Scholar 

Download references

Acknowledgments

All EPMA measurements were taken by Dr. Philip Piccoli of the University of Maryland at College Park Department of Geology. All NAA measurements were made by staff of the Missouri University Research Reactor Archaeometry Laboratory. Mr. Benoit Bouchard of Katanax/SPEX SamplePrep assisted in the initial development of the LiBo fusion procedure for ochre.

We thank the Kenya National Commission for Science, Technology, and Innovation (NACOSTI), Republic of Kenya Ministry of Higher Education Science and Technology, and National Council for Science and Technology for research clearance (Permit No. NACOSTI/P/15/6102/6746). This work would not have been possible without the efforts of our Maasai, Dorobo, and Samburu field guides, informants, and hosts (ashe oleng!), and John Munyiri of the National Museums of Kenya Archaeology Department. We also thank Ms. Mercy Gakii (National Museums of Kenya Cultural Heritage Department) and Mr. Matthew Magnani (Harvard University Department of Anthropology) for help in documenting ochre deposits and ethnography of traditional source exploitation and cultural practices.

Funding

This project was supported by grants for ochre ethnography and source sampling in Kenya and geochemical characterization in the USA: National Science Foundation (NSF) SBE Interdisciplinary Postdoctoral Fellowship SMA-1513984 (Zipkin, Ambrose, Lundstrom), NSF Senior Archaeology Research Grant BCS-15-61176 (Zipkin, Ambrose), and Wenner-Gren Foundation Post-Ph.D. Research Grant 02628 (Zipkin). LA-ICP-MS was made possible by NSF Instrumentation and Facilities Grant EAR-1441465 (Lundstrom, Ambrose, Johnson, Guenthner).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Zipkin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: It contained an error in the dimensions of LiBo fused bead shards described in the section "Lithium Borate Fusion Methods".

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zipkin, A.M., Ambrose, S.H., Lundstrom, C.C. et al. Red Earth, Green Glass, and Compositional Data: A New Procedure for Solid-State Elemental Characterization, Source Discrimination, and Provenience Analysis of Ochres. J Archaeol Method Theory 27, 930–970 (2020). https://doi.org/10.1007/s10816-020-09448-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-020-09448-9

Keywords

Navigation