Skip to main content
Log in

Pathogenic missense variation in PABPC1L/EPAB causes female infertility due to oocyte maturation arrest at the germinal vesicle stage

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Women undergoing controlled ovarian hyperstimulation prior to in vitro fertilization (IVF) are treated using various protocols to induce multiple follicular growths. Complete failure of all oocytes to mature during IVF cycles is rare; however, it is a known cause of primary female infertility. Recently, pathogenic variations in a few genes have been identified in women with oocyte maturation defects; however, the underlying genetic causes remain largely unknown.

This study included a Turkish family comprising three sisters with recurring oocyte maturation arrest at the germinal vesicle stage after multiple ovarian stimulations. Exome sequencing revealed a homozygous missense variant (c.1037C>T, p.Ala346Val) in the EPAB gene (also known as PABPC1L) in all three affected sisters, which was either absent or heterozygous in the unaffected family members. Functional experiments confirming the pathogenicity of the variant were performed by transfecting HEK293T cells and demonstrated the instability and increased rate of proteolysis of the mutated PABPC1L/EPAB protein. The identified variant, located in the well-conserved fourth RNA recognition motif (RRM4), in silico 3D modelling suggested changes in the physical properties of the pathogenic variant of PABPC1L/EPAB. 

Our findings validate PABPC1L/EPAB as an essential genetic contributor to the oocyte maturation process in humans and have direct implications for the genetic counselling of patients and their family members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data generated in this study are included in the following article and corresponding supplementary data. The raw sequencing data generated in the course of this study are not publicly available due to research protocol restrictions with patient informed consent not covering this data distribution. The identified variant has been submitted to ClinVar (VCV001172840.1) (https://www.ncbi.nlm.nih.gov/clinvar).

References

  1. Erickson G. Follicle growth and development | GLOWM [Internet]. 2008 [cited 2021 Jun 28]. Available from: http://www.glowm.com/section-view/heading/follicle-growth-and-development/item/288

  2. Johnson MH, Everitt B. Essential reproduction. In: Blackwell Wiley, editor. Sperm and eggs chapter. Wiley-Blackwell; 2000. p. 175–88.

    Google Scholar 

  3. Jaffe LA, Egbert JR. Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle. Annu Rev Physiol. 2017;79:237–60.

    Article  PubMed  CAS  Google Scholar 

  4. Coticchio G, Dal Canto M, Mignini Renzini M, Guglielmo MC, Brambillasca F, Turchi D, et al. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update. 2015;21:427–54.

    Article  PubMed  CAS  Google Scholar 

  5. Robker RL, Hennebold JD, Russell DL. Coordination of ovulation and oocyte maturation: a good egg at the right time. Endocrinology. 2018;159:3209–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Eppig JJ. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil Dev. 1996;8:485–9.

    Article  PubMed  CAS  Google Scholar 

  7. Voeltz GK, Ongkasuwan J, Standart N, Steitz JA. A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts. Genes Dev. 2001;15:774–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wilkie GS, Gautier P, Lawson D, Gray NK. Embryonic poly(A)-binding protein stimulates translation in germ cells. Mol Cell Biol. 2005;25:2060–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kim JH, Richter JD. RINGO/cdk1 and CPEB mediate poly(A) tail stabilization and translational regulation by ePAB. Genes Dev. 2007;21:2571–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lowther KM, Mehlmann LM. Embryonic poly(A)-binding protein is required during early stages of mouse oocyte development for chromatin organization, transcriptional silencing, and meiotic competence. Biol Reprod. 2015;93:43.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pushpa K, Kumar GA, Subramaniam K. Signaling-Mediated Control of Cell Division, From Oogenesis to Oocyte-to-Embryo Development. Results and Problems in Cell Differentiation vol 59. In: Arur S, editor. Translational Control of Germ Cell Decisions. Cham: Springer; 2017. p. 175–200.

    Google Scholar 

  12. Guzeloglu-Kayisli O, Lalioti MD, Babayev E, Torrealday S, Karakaya C, Seli E. Human embryonic poly(A)-binding protein (EPAB) alternative splicing is differentially regulated in human oocytes and embryos. Mol Hum Reprod. 2014;20:59–65.

    Article  PubMed  CAS  Google Scholar 

  13. Guzeloglu-Kayisli O, Lalioti MD, Aydiner F, Sasson I, Ilbay O, Sakkas D, et al. Embryonic poly(A)-binding protein (EPAB) is required for oocyte maturation and female fertility in mice. Biochem J. 2012;446:47–58.

    Article  PubMed  CAS  Google Scholar 

  14. Seli E, Lalioti MD, Flaherty SM, Sakkas D, Terzi N, Steitz JA. An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos. Proc Natl Acad Sci USA. 2005;102:367–72.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yang C-R, Lowther KM, Lalioti MD, Seli E. Embryonic poly(A)-binding protein (EPAB) is required for granulosa cell EGF signaling and cumulus expansion in female mice. Endocrinology. 2016;157:405–16.

    Article  PubMed  CAS  Google Scholar 

  16. Ozturk S, Guzeloglu-Kayisli O, Lowther KM, Lalioti MD, Sakkas D, Seli E. Epab is dispensable for mouse spermatogenesis and male fertility. Mol Reprod Dev. 2014;81:390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Okutman Ö, Demirel C, Tülek F, Pfister V, Büyük U, Muller J, et al. Homozygous splice site mutation in ZP1 causes familial oocyte maturation defect. Genes (Basel). 2020;11:E382.

    Article  Google Scholar 

  18. Geoffroy V, Pizot C, Redin C, Piton A, Vasli N, Stoetzel C, et al. VaRank: a simple and powerful tool for ranking genetic variants. PeerJ. 2015;3:e796.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  20. Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  ADS  Google Scholar 

  21. Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:W452–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7:Unit7.20.

    PubMed  Google Scholar 

  23. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11:361–2.

    Article  PubMed  CAS  Google Scholar 

  24. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    Article  PubMed  Google Scholar 

  25. Le Carrour T, Assou S, Tondeur S, Lhermitte L, Lamb N, Reme T, et al. Amazonia!: an online resource to google and visualize public human whole genome expression data. TOBIOIJ. 2010;4:5–10.

    Article  Google Scholar 

  26. Backenroth D, Homsy J, Murillo LR, Glessner J, Lin E, Brueckner M, et al. CANOES: detecting rare copy number variants from whole exome sequencing data. Nucleic Acids Res. 2014;42:e97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Geoffroy V, Herenger Y, Kress A, Stoetzel C, Piton A, Dollfus H, et al. AnnotSV: an integrated tool for structural variations annotation. Bioinformatics. 2018;34:3572–4.

    Article  PubMed  CAS  Google Scholar 

  28. Brandt T, Sack LM, Arjona D, Tan D, Mei H, Cui H, et al. Adapting ACMG/AMP sequence variant classification guidelines for single-gene copy number variants. Genet Med. 2020;22:336–44.

    Article  PubMed  Google Scholar 

  29. Van Der Kelen A, Okutman Ö, Javey E, Serdarogullari M, Janssens C, Ghosh MS, et al. A systematic review and evidence assessment of monogenic gene-disease relationships in human female infertility and differences in sex development. Hum Reprod Update. 2023;29:218–32.

    Article  PubMed  Google Scholar 

  30. Smith ED, Radtke K, Rossi M, Shinde DN, Darabi S, El-Khechen D, et al. Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017;38:600–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–15.

    Article  Google Scholar 

  32. Nevers Y, Kress A, Defosset A, Ripp R, Linard B, Thompson JD, et al. OrthoInspector 3.0: open portal for comparative genomics. Nucleic Acids Res. 2019;47:D411-8.

    Article  PubMed  CAS  Google Scholar 

  33. Plewniak F, Bianchetti L, Brelivet Y, Carles A, Chalmel F, Lecompte O, et al. PipeAlign: a new toolkit for protein family analysis. Nucleic Acids Res. 2003;31:3829–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Khenoussi W, Vanhoutrève R, Poch O, Thompson JD. SIBIS: a Bayesian model for inconsistent protein sequence estimation. Bioinformatics. 2014;30:2432–9.

    Article  PubMed  CAS  Google Scholar 

  35. Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics. 2007;23:1875–82.

    Article  PubMed  CAS  Google Scholar 

  36. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    Article  PubMed  CAS  Google Scholar 

  37. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Schäfer IB, Yamashita M, Schuller JM, Schüssler S, Reichelt P, Strauss M, et al. Molecular basis for poly(A) RNP architecture and recognition by the Pan2-Pan3 Deadenylase. Cell. 2019;177:1619-1631.e21.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen C-W, Lin J, Chu Y-W. iStable: off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinformatics. 2013;14(Suppl 2):S5.

    PubMed  PubMed Central  Google Scholar 

  41. Okutman O, Tarabeux J, Muller J, Viville S. Evaluation of a custom design gene panel as a diagnostic tool for human non-syndromic infertility. Genes (Basel). 2021;12:410.

    Article  PubMed  CAS  Google Scholar 

  42. Guzeloglu-Kayisli O, Pauli S, Demir H, Lalioti MD, Sakkas D, Seli E. Identification and characterization of human embryonic poly(A) binding protein (EPAB). Mol Hum Reprod. 2008;14:581–8.

    Article  PubMed  CAS  Google Scholar 

  43. Wang W, Guo J, Shi J, Li Q, Chen B, Pan Z, et al. Bi-allelic pathogenic variants in PABPC1L cause oocyte maturation arrest and female infertility. EMBO Mol Med. 2023;15:e17177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang X, Zhou R, Lu X, Dai S, Liu M, Jiang C, Yang Y, Shen Y, Wang Y, Liu H. Identification of nonfunctional PABPC1L causing oocyte maturation abnormalities and early embryonic arrest in female primary infertility. Clin Genet. 2023;104:648–58.

    Article  PubMed  CAS  Google Scholar 

  45. Daubner GM, Cléry A, Allain FH-T. RRM-RNA recognition: NMR or crystallography ...and new findings. Curr Opin Struct Biol. 2013;23:100–8.

    Article  PubMed  CAS  Google Scholar 

  46. Sachs AB, Davis RW. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell. 1989;58:857–67.

    Article  PubMed  CAS  Google Scholar 

  47. Yao G, Chiang Y-C, Zhang C, Lee DJ, Laue TM, Denis CL. PAB1 self-association precludes its binding to poly(A), thereby accelerating CCR4 deadenylation in vivo. Mol Cell Biol. 2007;27:6243–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Maddirevula S, Awartani K, Coskun S, AlNaim LF, Ibrahim N, Abdulwahab F, et al. A genomics approach to females with infertility and recurrent pregnancy loss. Hum Genet. 2020;139:605–13.

    Article  PubMed  CAS  Google Scholar 

  49. Sang Q, Li B, Kuang Y, Wang X, Zhang Z, Chen B, et al. Homozygous mutations in WEE2 cause fertilization failure and female infertility. Am J Hum Genet. 2018;102:649–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We would like also to thank Dr. Robert Drillien for his critical reading of this manuscript.

Funding

The study was funded by Fondation Maladie Rares (High Throughput Sequencing and Rare Diseases–2018, “GenOmics of rare diseases”).

Author information

Authors and Affiliations

Authors

Contributions

OO data analysis, variation confirmation; ASG recruitment of patients, collection of clinical data and samples; UB DNA extraction, quality and quantity control; JM supervised the bioinformatics analysis; ER performed the assays using humanized yeast cells and analyzed the data; NLM and RL performed the HEK293T cell assays, ER performed the yeast experiments, and KC performed the sequence alignments and analysis; CM performed the 3D modeling and analysis; SV supervised all the study. OO and SV designed and wrote the first draft of the manuscript. All authors contributed to the revision process and agreed to the last version of the manuscript.

Corresponding author

Correspondence to S. Viville.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okutman, O., Gürbüz, A.S., Büyük, U. et al. Pathogenic missense variation in PABPC1L/EPAB causes female infertility due to oocyte maturation arrest at the germinal vesicle stage. J Assist Reprod Genet 41, 311–322 (2024). https://doi.org/10.1007/s10815-023-03009-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-03009-1

Keywords

Navigation