Skip to main content

Advertisement

Log in

The HERA (Hyper-response Risk Assessment) Delphi consensus for the management of hyper-responders in in vitro fertilization

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

A Correction to this article was published on 11 December 2023

This article has been updated

Abstract

Purpose

To provide agreed-upon guidelines on the management of a hyper-responsive patient undergoing ovarian stimulation (OS)

Methods

A literature search was performed regarding the management of hyper-response to OS for assisted reproductive technology. A scientific committee consisting of 4 experts discussed, amended, and selected the final statements. A priori, it was decided that consensus would be reached when ≥66% of the participants agreed, and ≤3 rounds would be used to obtain this consensus. A total of 28/31 experts responded (selected for global coverage), anonymous to each other.

Results

A total of 26/28 statements reached consensus. The most relevant are summarized here. The target number of oocytes to be collected in a stimulation cycle for IVF in an anticipated hyper-responder is 15–19 (89.3% consensus). For a potential hyper-responder, it is preferable to achieve a hyper-response and freeze all than aim for a fresh transfer (71.4% consensus). GnRH agonists should be avoided for pituitary suppression in anticipated hyper-responders performing IVF (96.4% consensus). The preferred starting dose in the first IVF stimulation cycle of an anticipated hyper-responder of average weight is 150 IU/day (82.1% consensus). ICoasting in order to decrease the risk of OHSS should not be used (89.7% consensus). Metformin should be added before/during ovarian stimulation to anticipated hyper-responders only if the patient has PCOS and is insulin resistant (82.1% consensus). In the case of a hyper-response, a dopaminergic agent should be used only if hCG will be used as a trigger (including dual/double trigger) with or without a fresh transfer (67.9% consensus). After using a GnRH agonist trigger due to a perceived risk of OHSS, luteal phase rescue with hCG and an attempt of a fresh transfer is discouraged regardless of the number of oocytes collected (72.4% consensus). The choice of the FET protocol is not influenced by the fact that the patient is a hyper-responder (82.8% consensus). In the cases of freeze all due to OHSS risk, a FET cycle can be performed in the immediate first menstrual cycle (92.9% consensus).

Conclusion

These guidelines for the management of hyper-response can be useful for tailoring patient care and for harmonizing future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Authors agree to make data and materials supporting the results or analyses presented in their paper available upon reasonable request.

Change history

References

  1. Sunkara SK, Rittenberg V, Raine-Fenning N, Bhattacharya S, Zamora J, Coomarasamy A. Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. Hum Reprod [Internet]. 2011;26:1768–74. [cited 2022 Mar 16] Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/21558332/

    Article  PubMed  Google Scholar 

  2. Polyzos NP, Drakopoulos P, Parra J, Pellicer A, Santos-Ribeiro S, Tournaye H, et al. Cumulative live birth rates according to the number of oocytes retrieved after the first ovarian stimulation for in vitro fertilization/intracytoplasmic sperm injection: a multicenter multinational analysis including ∼15,000 women. Fertil Steril [Internet]. 2018;110:661–670.e1. [cited 2021 Mar 4]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/30196963/

    Article  PubMed  Google Scholar 

  3. Bosdou JK, Venetis CA, Tarlatzis BC, Grimbizis GF, Kolibianakis EM. Higher probability of live-birth in high, but not normal, responders after first frozen-embryo transfer in a freeze-only cycle strategy compared to fresh-embryo transfer: a meta-analysis. Hum Reprod [Internet]. 2019;34:491–505. [cited 2022 Mar 17]; Available from: https://academic.oup.com/humrep/article/34/3/491/5303709

    Article  PubMed  CAS  Google Scholar 

  4. Roque M, Haahr T, Geber S, Esteves SC, Humaidan P. Fresh versus elective frozen embryo transfer in IVF/ICSI cycles: a systematic review and meta-analysis of reproductive outcomes. Hum Reprod Update [Internet]. 2019;25:2–14. [cited 2022 Jun 25] Available from: https://academic.oup.com/humupd/article/25/1/2/5155324

    Article  PubMed  Google Scholar 

  5. Boynukalin FK, Turgut NE, Gultomruk M, Ecemis S, Yarkiner Z, Findikli N, et al. Impact of elective frozen vs. fresh embryo transfer strategies on cumulative live birth: Do deleterious effects still exist in normal & hyper responders? PLoS One. 2020;15 [cited 2022 Mar 17]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/32589634/

  6. Ioannidou PG, Bosdou JK, Lainas GT, Lainas TG, Grimbizis GF, Kolibianakis EM. How frequent is severe ovarian hyperstimulation syndrome after GnRH agonist triggering in high-risk women? A systematic review and meta-analysis. Reprod Biomed Online [Internet]. 2021;42:635–50. [cited 2022 Jun 21]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/33483281/

    Article  PubMed  CAS  Google Scholar 

  7. Orvieto R. Can we eliminate severe ovarian hyperstimulation syndrome? Hum Reprod [Internet]. 2005;20:320–2. [cited 2023 Mar 16]; Available from: https://pubmed.ncbi.nlm.nih.gov/15567876/

    Article  PubMed  Google Scholar 

  8. Committee of the American Society for Reproductive Medicine P, Pfeifer S, Butts MSCES, Dumesic D, Fossum G, Gracia MSCEC, et al. Prevention and treatment of moderate and severe ovarian hyperstimulation syndrome: a guideline. Fertil Steril [Internet]. 2016;106:1634–47. https://doi.org/10.1016/j.fertnstert.2016.08.048.

    Article  Google Scholar 

  9. Feferkorn I, Ata B, Esteves SC, La Marca A, Paulson R, Blockeel C, et al. The HERA (Hyper-response Risk Assessment) Delphi consensus definition of hyper-responders for in-vitro fertilization. J Assist Reprod Genet. 2023; [cited 2023 Mar 21]; Available from: https://pubmed.ncbi.nlm.nih.gov/36933094/

  10. Steward RG, Lan L, Shah AA, Yeh JS, Price TM, Goldfarb JM, et al. Oocyte number as a predictor for ovarian hyperstimulation syndrome and live birth: an analysis of 256,381 in vitro fertilization cycles. Fertil Steril. 2014;101:967–73.

    Article  PubMed  Google Scholar 

  11. Polyzos NP, Drakopoulos P, Parra J, Pellicer A, Santos-Ribeiro S, Tournaye H, et al. Cumulative live birth rates according to the number of oocytes retrieved after the first ovarian stimulation for in vitro fertilization/intracytoplasmic sperm injection: a multicenter multinational analysis including ∼15,000 women. Fertil Steril. 2018;110:661–670.e1.

    Article  PubMed  Google Scholar 

  12. Magnusson Å, Källen K, Thurin-Kjellberg A, Bergh C. The number of oocytes retrieved during IVF: a balance between efficacy and safety. Hum Reprod [Internet]. 2018;33:58–64. [cited 2022 Apr 27]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/29136154/

    Article  PubMed  Google Scholar 

  13. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfers in high responders. Fertil Steril [Internet]. 2011;96:516–8. [cited 2022 Jun 25]; Available from: https://pubmed.ncbi.nlm.nih.gov/21737071/

    Article  PubMed  Google Scholar 

  14. Chen Z-J, Shi Y, Sun Y, Zhang B, Liang X, Cao Y, et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. New Engl J Med [Internet]. 2016;375:523–33. [cited 2022 Apr 20]; Available from: https://www.nejm.org/doi/10.1056/NEJMoa1513873

    Article  PubMed  Google Scholar 

  15. Toftager M, Bogstad J, Bryndorf T, Løssl K, Roskær J, Holland T, et al. Risk of severe ovarian hyperstimulation syndrome in GnRH antagonist versus GnRH agonist protocol: RCT including 1050 first IVF/ICSI cycles. Hum Reprod [Internet]. 2016;31:1253–64. [cited 2022 Jul 10]; Available from: https://academic.oup.com/humrep/article/31/6/1253/1749630

    Article  PubMed  CAS  Google Scholar 

  16. Ovarian Stimulation TEGGO, Bosch E, Broer S, Griesinger G, Grynberg M, Humaidan P, et al. ESHRE guideline: ovarian stimulation for IVF/ICSI†. Hum Reprod Open [Internet]. 2020;2020:1–13. [cited 2022 Mar 23]; Available from: https://academic.oup.com/hropen/article/2020/2/hoaa009/5827574

    Google Scholar 

  17. Oudshoorn SC, van Tilborg TC, Eijkemans MJC, Oosterhuis GJE, Friederich J, van Hooff MHA, et al. Individualized versus standard FSH dosing in women starting IVF/ICSI: an RCT. Part 2: the predicted hyper responder. Hum Reprod [Internet]. 2017;32:2506–14. [cited 2022 Apr 30]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/29121269/

    Article  PubMed  CAS  Google Scholar 

  18. Lensen SF, Wilkinson J, Leijdekkers JA, la Marca A, Mol BWJ, Marjoribanks J, et al. Individualised gonadotropin dose selection using markers of ovarian reserve for women undergoing in vitro fertilisation plus intracytoplasmic sperm injection (IVF/ICSI). Cochrane Database Syst Rev. 2018;2 [cited 2022 Jun 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/29388198/

  19. Friis Petersen J, Løkkegaard E, Andersen LF, Torp K, Egeberg A, Hedegaard L, et al. A randomized controlled trial of AMH-based individualized FSH dosing in a GnRH antagonist protocol for IVF. Hum Reprod Open [Internet]. 2019;2019 [cited 2022 Jun 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/30895268/

  20. Mannaerts BMJL, Rombout F, Out HJ, Bennink HC. Clinical profiling of recombinant follicle stimulating hormone (rFSH; Puregon): relationship between serum FSH and efficacy. Hum Reprod Update [Internet]. 1996;2:153–61. [cited 2022 Jun 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/9079410/

    Article  PubMed  CAS  Google Scholar 

  21. Rose TH, Röshammar D, Erichsen L, Grundemar L, Ottesen JT. Population pharmacokinetic modelling of FE 999049, a recombinant human follicle-stimulating hormone, in healthy women after single ascending doses. Drugs R D [Internet]. 2016;16:173–80. [cited 2022 Jun 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/27003895/

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rose TH, Röshammar D, Erichsen L, Grundemar L, Ottesen JT. Characterisation of population pharmacokinetics and endogenous follicle-stimulating hormone (FSH) levels after multiple dosing of a recombinant human FSH (FE 999049) in healthy women. Drugs RD [Internet]. 2016;16:165–72. [cited 2022 Jun 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/27139012/

    Article  CAS  Google Scholar 

  23. Ledger WL, Fauser BCJM, Devroey P, Zandvliet AS, BMJL M. Corifollitropin alfa doses based on body weight: clinical overview of drug exposure and ovarian response. Reprod Biomed Online [Internet]. 2011;23:150–9. [cited 2022 Jun 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/21665541/

    Article  PubMed  CAS  Google Scholar 

  24. Leijdekkers JA, van Tilborg TC, Torrance HL, Oudshoorn SC, Brinkhuis EA, Koks CAM, et al. Do female age and body weight modify the effect of individualized FSH dosing in IVF/ICSI treatment? A secondary analysis of the OPTIMIST trial. Acta Obstet Gynecol Scand [Internet]. 2019;98:1332–40. [cited 2022 Jun 24]; Available from: https://onlinelibrary-wiley-com.proxy3.library.mcgill.ca/doi/full/10.1111/aogs.13664

    Article  PubMed  CAS  Google Scholar 

  25. Lainas GT, Lainas TG, Sfontouris IA, Venetis CA, Bosdou JK, Chatzimeletiou A, et al. Association between body mass index and oocyte maturation in patients triggered with GnRH agonist who are at high risk for severe ovarian hyperstimulation syndrome: an observational cohort study. Reprod Biomed Online [Internet]. 2020;40:168–75. [cited 2022 Jun 21]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/31839394/

    Article  PubMed  CAS  Google Scholar 

  26. Aboulghar MA, Mansour RT, Serour GI, Rhodes CA, Amin YM. Reduction of human menopausal gonadotropin dose before coasting prevents severe ovarian hyperstimulation syndrome with minimal cycle cancellation. J Assist Reprod Genet [Internet]. 2000;17:298. [cited 2022 Aug 26]; Available from: /pmc/articles/PMC3455203/

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Fatemi H, Bilger W, Denis D, Griesinger G, la Marca A, Longobardi S, et al. Dose adjustment of follicle-stimulating hormone (FSH) during ovarian stimulation as part of medically-assisted reproduction in clinical studies: a systematic review covering 10 years (2007-2017). Reprod Biol Endocrinol [Internet]. 2021;19 [cited 2022 Aug 26] Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/33975610/

  28. Mahony MC, Hayward B, Mottla GL, Richter KS, Beall S, Ball GD, et al. Recombinant human follicle-stimulating hormone alfa dose adjustment in US clinical practice: an observational, retrospective analysis of a real-world electronic medical records database. Front Endocrinol (Lausanne) [Internet]. 2021;12 [cited 2022 Aug 26]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/34956077/

  29. D’Angelo A, Brown J, Amso NN. Coasting (withholding gonadotrophins) for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev [Internet]. 2011; [cited 2022 Aug 26]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/21678336/

  30. D’Angelo A, Amso NN, Hassan R. Coasting (withholding gonadotrophins) for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev [Internet]. 2017;5 [cited 2022 Aug 26]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/28535578/

  31. Palomba S, Falbo A, Russo T, Orio F, Tolino A, Zullo F. Systemic and local effects of metformin administration in patients with polycystic ovary syndrome (PCOS): relationship to the ovulatory response. Hum Reprod. 2010;25:1005–13. [cited 2022 Aug 28]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/20106839/

    Article  PubMed  CAS  Google Scholar 

  32. Tso LO, Costello MF, Albuquerque LET, Andriolo RB, Macedo CR. Metformin treatment before and during IVF or ICSI in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2020;12 [cited 2022 Jun 23] Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/33347618/

  33. Wu Y, Tu M, Huang Y, Liu Y, Zhang D. Association of metformin with pregnancy outcomes in women with polycystic ovarian syndrome undergoing in vitro fertilization: a systematic review and meta-analysis. JAMA Netw Open [Internet]. 2020;3:e2011995. [cited 2022 Jun 23]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/32744629/

    Article  PubMed  PubMed Central  Google Scholar 

  34. Siristatidis CS, Basios G, Pergialiotis V, Vogiatzi P. Aspirin for in vitro fertilisation. Cochrane Database Syst Rev. 2016;11 [cited 2022 Aug 26]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/27807847/

  35. Orvieto R. Prediction of ovarian hyperstimulation syndrome. Challenging the estradiol mythos. Human Reproduction [Internet]. 2003;18:665–7. [cited 2022 Apr 4]; Available from: https://academic.oup.com/humrep/article/18/4/665/596582

    Article  PubMed  CAS  Google Scholar 

  36. Orvieto R. Controlled ovarian hyperstimulation - an inflammatory state. J Soc Gynecol Investig. 2004;11:424–6.

    Article  PubMed  CAS  Google Scholar 

  37. Orvieto R, Ben-Rafael Z. Ovarian hyperstimulation syndrome: a new insight into an old enigma. J Soc Gynecol Investig [Internet]. 1998;5:110–3. [cited 2023 Mar 16]; Available from: https://pubmed.ncbi.nlm.nih.gov/9614638/

    Article  PubMed  CAS  Google Scholar 

  38. Ata B, Tulandi T. Pathophysiology of ovarian hyperstimulation syndrome and strategies for its prevention and treatment. Expert Rev Obstet Gynecol. 2014;4:299–311. https://doi.org/10.1586/eog.09.10.

    Article  Google Scholar 

  39. Levy T, Orvieto R, Homburg R, Peleg D, Dekel A, Ben-Rafael Z. Severe ovarian hyperstimulation syndrome despite low plasma oestrogen concentrations in a hypogonadotrophic, hypogonadal patient. Human Reproduction [Internet]. 1996;11:1177–9. [cited 2022 Apr 29]; Available from: https://academic.oup.com/humrep/article/11/6/1177/772241

    Article  PubMed  CAS  Google Scholar 

  40. Papanikolaou EG, Pozzobon C, Kolibianakis EM, Camus M, Tournaye H, Fatemi HM, et al. Incidence and prediction of ovarian hyperstimulation syndrome in women undergoing gonadotropin-releasing hormone antagonist in vitro fertilization cycles. Fertil Steril. 2006;85:112–20.

    Article  PubMed  CAS  Google Scholar 

  41. Tarlatzi TB, Venetis CA, Devreker F, Englert Y, Delbaere A. What is the best predictor of severe ovarian hyperstimulation syndrome in IVF? A cohort study. J Assist Reprod Genet [Internet]. 2017;34:1341.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kahnberg A, Enskog A, Brännström M, Lundin K, Bergh C. Prediction of ovarian hyperstimulation syndrome in women undergoing in vitro fertilization. Acta Obstet Gynecol Scand [Internet]. 2009;88:1373–81. [cited 2022 Aug 26]; Available from: https://onlinelibrary.wiley.com/doi/full/10.3109/00016340903287482

    Article  PubMed  CAS  Google Scholar 

  43. Griesinger G, Verweij PJM, Gates D, Devroey P, Gordon K, Stegmann BJ, et al. Prediction of ovarian hyperstimulation syndrome in patients treated with Corifollitropin alfa or rFSH in a GnRH antagonist protocol. PLoS One [Internet]. 2016;11:e0149615. https://doi.org/10.1371/journal.pone.0149615.

    Article  PubMed  CAS  Google Scholar 

  44. Gomez R, Gonzalez-Izquierdo M, Zimmermann RC, Novella-Maestre E, Alonso-Muriel I, Sanchez-Criado J, et al. Low-dose dopamine agonist administration blocks vascular endothelial growth factor (VEGF)-mediated vascular hyperpermeability without altering VEGF receptor 2-dependent luteal angiogenesis in a rat ovarian hyperstimulation model. Endocrinology [Internet]. 2006;147:5400–11. [cited 2022 Jul 2]; Available from: https://academic.oup.com/endo/article/147/11/5400/2500695

    Article  PubMed  CAS  Google Scholar 

  45. Mourad S, Brown J, Farquhar C. Interventions for the prevention of OHSS in ART cycles: an overview of Cochrane reviews. Cochrane Database Syst Rev. 2017;1 [cited 2022 Apr 30]. Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/28111738/

  46. Leitao VMS, Moroni RM, Seko LMD, Nastri CO, Martins WP. Cabergoline for the prevention of ovarian hyperstimulation syndrome: systematic review and meta-analysis of randomized controlled trials. Fertil Steril. 2014;101:664–675.e7.

    Article  PubMed  CAS  Google Scholar 

  47. Tang H, Mourad SM, Wang A, Zhai S di, Hart RJ. Dopamine agonists for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev [Internet]. 2021 2021 [cited 2022 Aug 20]. Available from: /pmc/articles/PMC8092425/.

  48. Shrem G, Steiner N, Balayla J, Volodarsky-Perel A, Tannus S, Son WY, et al. Use of cabergoline and post-collection GnRH antagonist administration for prevention of ovarian hyperstimulation syndrome. Reprod Biomed Online. 2019;39:433–8.

    Article  PubMed  CAS  Google Scholar 

  49. Seow KM, Lin YH, Bai CH, Chen HJ, Hsieh BC, Huang LW, et al. Clinical outcome according to timing of cabergoline initiation for prevention of OHSS: a randomized controlled trial. Reprod Biomed Online. 2013;26:562–8.

    Article  PubMed  CAS  Google Scholar 

  50. The ESHRE Guideline Group on Ovarian Stimulation, Bosch E, Broer S, Griesinger G, Grynberg M, Humaidan P, et al. ESHRE guideline: ovarian stimulation for IVF/ICSI†. Hum Reprod Open [Internet]. 2020;2020:1–13. [cited 2022 Mar 17]; Available from: https://academic.oup.com/hropen/article/2020/2/hoaa009/5827574

    Google Scholar 

  51. Zaat T, Zagers M, Mol F, Goddijn M, van Wely M, Mastenbroek S. Fresh versus frozen embryo transfers in assisted reproduction. Cochrane Database Syst Rev. 2021;2 [cited 2022 Aug 20]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/33539543/

  52. Revelli A, Dolfin E, Gennarelli G, Lantieri T, Massobrio M, Holte JG, et al. Low-dose acetylsalicylic acid plus prednisolone as an adjuvant treatment in IVF: a prospective, randomized study. Fertil Steril. 2008;90:1685–91.

    Article  PubMed  CAS  Google Scholar 

  53. Várnagy Á, Bódis J, Mánfai Z, Wilhelm F, Busznyák C, Koppán M. Low-dose aspirin therapy to prevent ovarian hyperstimulation syndrome. Fertil Steril. 2010;93:2281–4.

    Article  PubMed  Google Scholar 

  54. Asimakopoulos B, Nikolettos N, Nehls B, Diedrich K, Al-Hasani S, Metzen E. Gonadotropin-releasing hormone antagonists do not influence the secretion of steroid hormones but affect the secretion of vascular endothelial growth factor from human granulosa luteinized cell cultures. Fertil Steril [Internet]. 2006;86:636–41. [cited 2022 Aug 23]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/16904114/

    Article  PubMed  CAS  Google Scholar 

  55. Lainas TG, Sfontouris IA, Zorzovilis IZ, Petsas GK, Lainas GT, Kolibianakis EM. Management of severe early ovarian hyperstimulation syndrome by re-initiation of GnRH antagonist. Reprod Biomed Online [Internet]. 2007;15:408–12. [cited 2022 Aug 23]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/17908403/

    Article  PubMed  CAS  Google Scholar 

  56. Lainas GT, Kolibianakis EM, Sfontouris IA, Zorzovilis IZ, Petsas GK, Tarlatzi TB, et al. Outpatient management of severe early OHSS by administration of GnRH antagonist in the luteal phase: an observational cohort study. Reprod Biol Endocrinol. 2012;10 [cited 2022 Aug 23]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/22938051/

  57. Mills G, Dahan MH. Gonadotropin releasing hormone (GnRH) antagonist administration to decrease the risk of ovarian hyperstimulation syndrome in GNRH agonist cycles triggered with human chorionic gonadotropin. Arch Gynecol Obstet [Internet]. 2022; [cited 2022 Aug 31]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/35932297/

  58. VTE, thrombophilia, antithrombotic therapy, and pregnancy - antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest [Internet]. 2012;141:e691S–736S. [cited 2022 Aug 23]; Available from: http://journal.chestnet.org/article/S0012369212601366/fulltext

  59. Castillo JC, Dolz M, Bienvenido E, Abad L, Casan EM, Bonilla-Musoles F. Cycles triggered with GnRH agonist: exploring low-dose HCG for luteal support. Reprod Biomed Online [Internet]. 2010;20:175–81. [cited 2022 Aug 26]; Available from: https://pubmed.ncbi.nlm.nih.gov/20113955/

    Article  PubMed  CAS  Google Scholar 

  60. Humaidan P. Luteal phase rescue in high-risk OHSS patients by GnRHa triggering in combination with low-dose HCG: a pilot study. Reprod Biomed Online [Internet]. 2009;18:630–4. [cited 2022 Aug 26]; Available from: https://pubmed.ncbi.nlm.nih.gov/19549440/

    Article  PubMed  CAS  Google Scholar 

  61. Humaidan P, Ejdrup Bredkjær H, Westergaard LG, Yding Andersen C. 1,500 IU human chorionic gonadotropin administered at oocyte retrieval rescues the luteal phase when gonadotropin-releasing hormone agonist is used for ovulation induction: a prospective, randomized, controlled study. Fertil Steril [Internet]. 2010;93:847–54. [cited 2022 Aug 26]; Available from: https://pubmed.ncbi.nlm.nih.gov/19200959/

    Article  PubMed  CAS  Google Scholar 

  62. Humaidan P, Bungum L, Bungum M, Andersen CY. Rescue of corpus luteum function with peri-ovulatory HCG supplementation in IVF/ICSI GnRH antagonist cycles in which ovulation was triggered with a GnRH agonist: a pilot study. Reprod Biomed Online [Internet]. 2006;13:173–8. [cited 2022 Aug 26]; Available from: https://pubmed.ncbi.nlm.nih.gov/16895629/

    Article  PubMed  CAS  Google Scholar 

  63. Humaidan P, Polyzos NP, Alsbjerg B, Erb K, Mikkelsen AL, Elbaek HO, et al. GnRHa trigger and individualized luteal phase hCG support according to ovarian response to stimulation: two prospective randomized controlled multi-centre studies in IVF patients. Hum Reprod [Internet]. 2013;28:2511–21. [cited 2022 Aug 26]; Available from: https://academic.oup.com/humrep/article/28/9/2511/597543

    Article  PubMed  CAS  Google Scholar 

  64. Santos-Ribeiro S, Mackens S, Popovic-Todorovic B, Racca A, Polyzos NP, van Landuyt L, et al. The freeze-all strategy versus agonist triggering with low-dose hCG for luteal phase support in IVF/ICSI for high responders: a randomized controlled trial. Hum Reprod [Internet]. 2020;35:2808–18. [cited 2023 Mar 24]; Available from: https://pubmed.ncbi.nlm.nih.gov/32964939/

    Article  PubMed  Google Scholar 

  65. Humaidan P, Polyzos NP, Alsbjerg B, Erb K, Mikkelsen AL, Elbaek HO, et al. GnRHa trigger and individualized luteal phase hCG support according to ovarian response to stimulation: two prospective randomized controlled multi-centre studies in IVF patients. Hum Reprod [Internet]. 2013;28:2511–21. [cited 2022 Aug 26]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/23753114/

    Article  PubMed  CAS  Google Scholar 

  66. Iliodromiti S, Blockeel C, Tremellen KP, Fleming R, Tournaye H, Humaidan P, et al. Consistent high clinical pregnancy rates and low ovarian hyperstimulation syndrome rates in high-risk patients after GnRH agonist triggering and modified luteal support: a retrospective multicentre study. Hum Reprod [Internet]. 2013;28:2529–36. [cited 2022 Aug 26]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/23873146/

    Article  PubMed  CAS  Google Scholar 

  67. Seyhan A, Ata B, Polat M, Son WY, Yarali H, Dahan MH. Severe early ovarian hyperstimulation syndrome following GnRH agonist trigger with the addition of 1500 IU hCG. Hum Reprod [Internet]. 2013;28:2522–8. [cited 2023 Feb 22]; Available from: https://pubmed.ncbi.nlm.nih.gov/23633553/

    Article  PubMed  CAS  Google Scholar 

  68. Orvieto R, Kirshenbaum M, Gleicher N. Is embryo cryopreservation causing macrosomia-and what else? Front Endocrinol (Lausanne) [Internet]. 2020;11 [cited 2023 Mar 16]; Available from: https://pubmed.ncbi.nlm.nih.gov/32047479/

  69. Glujovsky D, Pesce R, Sueldo C, Quinteiro Retamar AM, Hart RJ, Ciapponi A. Endometrial preparation for women undergoing embryo transfer with frozen embryos or embryos derived from donor oocytes. Cochrane Database Syst Rev. 2020;10 [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/33112418/

  70. Vinsonneau L, Labrosse J, Porcu-Buisson G, Chevalier N, Galey J, Ahdad N, et al. Impact of endometrial preparation on early pregnancy loss and live birth rate after frozen embryo transfer: a large multicenter cohort study (14 421 frozen cycles). Hum Reprod Open [Internet]. 2022;2022 [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/35274060/

  71. Gan J, Rozen G, Polyakov A. Treatment outcomes of blastocysts thaw cycles, comparing the presence and absence of a corpus luteum: a systematic review and meta-analysis. BMJ Open [Internet]. 2022;12:e051489. [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/35473741/

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wu H, Zhou P, Lin X, Wang S, Zhang S. Endometrial preparation for frozen-thawed embryo transfer cycles: a systematic review and network meta-analysis. J Assist Reprod Genet. 2021;38:1913–26. [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/33829375/

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rosalik K, Carson S, Pilgrim J, Luizzi J, Levy G, Heitmann R, et al. Effects of different frozen embryo transfer regimens on abnormalities of fetal weight: a systematic review and meta-analysis. Hum Reprod Update [Internet]. 2021;28:1–14. [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/34865039/

    Article  PubMed  Google Scholar 

  74. Asserhøj LL, Spangmose AL, Aaris Henningsen AK, Clausen TD, Ziebe S, Jensen RB, et al. Adverse obstetric and perinatal outcomes in 1,136 singleton pregnancies conceived after programmed frozen embryo transfer (FET) compared with natural cycle FET. Fertil Steril [Internet]. 2021;115:947–56. [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/33461756/

    Article  PubMed  Google Scholar 

  75. Busnelli A, Schirripa I, Fedele F, Bulfoni A, Levi-Setti PE. Obstetric and perinatal outcomes following programmed compared to natural frozen-thawed embryo transfer cycles: a systematic review and meta-analysis. Hum Reprod [Internet]. 2022;37 [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/35553678/

  76. RESULTS - Frozen-Thawed Embryo Transfer - IVF-Worldwide [Internet]. [cited 2022 Aug 24]. Available from: https://ivf-worldwide.com/survey/frozen-thawed-embryo-transfer/results-frozen-thawed-embryo-transfer.html.

  77. Huang J, Lu X, Xie Q, Lin J, Cai R, Kuang Y. Timing of frozen-thawed embryo transfer after controlled ovarian stimulation in a non-elective freeze-all policy. Ann Transl Med [Internet]. 2019;7:752–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Santos-Ribeiro S, Siffain J, Polyzos NP, van de Vijver A, van Landuyt L, Stoop D, et al. To delay or not to delay a frozen embryo transfer after a failed fresh embryo transfer attempt? Fertil Steril [Internet]. 2016;105:1202–1207.e1. [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/26806686/

    Article  PubMed  Google Scholar 

  79. Horowitz E, Mizrachi Y, Farhi J, Shalev A, Raziel A, Weissman A. Modified natural-cycle cryopreserved embryo transfer: is a washout period needed after a failed fresh cycle? Reprod Biomed Online [Internet]. 2019;39:439–45. [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/31307924/

    Article  PubMed  Google Scholar 

  80. Santos-Ribeiro S, Polyzos NP, Lan VTN, Siffain J, Mackens S, van Landuyt L, et al. The effect of an immediate frozen embryo transfer following a freeze-all protocol: a retrospective analysis from two centres. Hum Reprod [Internet]. 2016;31:2541–8. [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/27609984/

    Article  PubMed  Google Scholar 

  81. Lattes K, Checa MA, Vassena R, Brassesco M, Vernaeve V. There is no evidence that the time from egg retrieval to embryo transfer affects live birth rates in a freeze-all strategy. Hum Reprod [Internet]. 2017;32:368–74. [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/27986819/

    Article  PubMed  CAS  Google Scholar 

  82. Bourdon M, Santulli P, Maignien C, Pocate-Cheriet K, Alwohaibi A, Marcellin L, et al. The interval between oocyte retrieval and frozen-thawed blastocyst transfer does not affect the live birth rate and obstetrical outcomes. PLoS One. 2018;13 [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/30339700/

  83. Ozgur K, Bulut H, Berkkanoglu M, Humaidan P, Coetzee K. Frozen embryo transfer can be performed in the cycle immediately following the freeze-all cycle. J Assist Reprod Genet [Internet]. 2018;35:135–42. [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/28939988/

    Article  PubMed  Google Scholar 

  84. Higgins C, Healey M, Jatkar S, Vollenhoven B. Interval between IVF stimulation cycle and frozen embryo transfer: is there a benefit to a delay between cycles? Aust N Z J Obstet Gynaecol [Internet]. 2018;58:217–21. [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/28905357/

    Article  PubMed  Google Scholar 

  85. He Y, Zheng H, Du H, Liu J, Li L, Liu H, et al. Delayed frozen embryo transfer failed to improve live birth rate and neonatal outcomes in patients requiring whole embryo freezing. Reprod Biol Endocrinol [Internet]. 2020;18

  86. Yildiz S, Turkgeldi E, Kalafat E, Keles I, Gokyer D, Ata B. Do live birth rate and obstetric outcomes vary between immediate and delayed embryo transfers following freeze-all cycles? J Gynecol Obstet Hum Reprod. 2021;50 [cited 2023 Mar 16]; Available from: https://pubmed.ncbi.nlm.nih.gov/34506996/

  87. Bergenheim SJ, Saupstad M, Pistoljevic N, Andersen AN, Forman JL, Løssl K, et al. Immediate versus postponed frozen embryo transfer after IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update [Internet]. 2021;27:623–42. [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/33594441/

    Article  PubMed  Google Scholar 

  88. Song JY, Dong FY, Li L, Zhang XX, Wang AJ, Zhang Y, et al. Immediate versus delayed frozen embryo transfer in women following a failed IVF-ET attempt: a multicenter randomized controlled trial. Reprod Biol Endocrinol. 2021;19 [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/34461950/

  89. Li H, Sun X, Yang J, Li L, Zhang W, Lu X, et al. Immediate versus delayed frozen embryo transfer in patients following a stimulated IVF cycle: a randomised controlled trial. Hum Reprod [Internet]. 2021;36:1832–40. [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/33885131/

    Article  PubMed  Google Scholar 

  90. Zuo N, Gao Y, Zhang N, Li D, Wang X. Effects of immediate versus delayed frozen embryo transfer in high responder patients undergoing freeze-all cycles. BMC Pregnancy Childbirth [Internet]. 2021;21 [cited 2022 Aug 24]; Available from: https://pubmed-ncbi-nlm-nih-gov.proxy3.library.mcgill.ca/34182954/

  91. Timmons D, Montrief T, Koyfman A, Long B. Ovarian hyperstimulation syndrome: a review for emergency clinicians. Am J Emerg Med. 2019;37:1577–84.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Hera was the goddess of women, marriage, family, and childbirth in ancient Greek mythology and, as such, was felt to make a fitting title for a woman with hyper-response.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Feferkorn.

Ethics declarations

Competing interests

All declarations of interest are outside the submitted work. Peter Humaidan reports reception of lecture honoraria from Merck, Gedeon Richter, and IBSA. Antonio La Marca reports reception of consulting fees from Merck, Organon, Ferring, Gedeon Richter, Theramex, Beckman Coulter, and Roche. Samuel Santos-Ribeiro reports reception of research funding from Roche Diagnostics, Organon, and Theramex; reception of consulting fees from Organon, MSD, and Ferring; honoraria for lectures from Ferring, Besins, MSD/Organon, Theramex, and Gedeon Richter; reception of equipment materials or other services from Roche Diagnostics and Ferring; and is deputy of the SQART SIG in ESHRE. Alessandro Conforti reports reception of grants from the University of Naples Federico II; reception honoraria from Medea, Event Planet, and Merck. Baris Ata reports reception of consulting fees from Merck GmBH–Turkey; reception of payment or honoraria from Abbott, Merck GmBH, and Ferring; reception of support for attending meetings or travel from IBSA; is president of the Turkish Society of Reproductive Medicine; and is an executive committee member of ESHRE. Juan Garcia Velasco reports reception of payment or honoraria for lectures or educational events from Merck, Ferring, MSD, Organon, Theramex, and Gedeon Richter. George Lainas reports reception of payment or honoraria for lectures or educational events from Merck and Ferring, payment for expert testimony from Merck, and support for attending meetings from ESHRE. He also participated in data safety monitoring or advisory board of Merck. Filippo Maria Ubaldi is the scientific director of GeneraLife and minority shareholder of the company. He is also the president of SIFES-MR (the Italian Society of Fertility, Sterility and Reproductive Medicine) and a member of the scientific board of Medea. In the last 3 years, F.M. Ubaldi has received honoraria or consultation fees from Merck, MSD, Ferring, Gedeon Richter, Organon, and IBSA. Sesh Sunkara reports reception of payment or honoraria for lectures from Merck Ferring and MSD. Raoul Orvieto reports reception of consulting fees from Merck and Ferring and payment or honoraria for lectures from Merck and Ferring. Nikolaos Polyzos reports reception of grants or contracts from Merck Serono, IBSA, Organon, Ferring, Roche, Theramex, Besins Healthcare, and Gedeon Richter and reception of consulting fees from Merck Serono, IBSA, Organon, Ferring, Besins Healthcare, and Gedeon Richter. Hakan Yarali reports unrestricted grants from Merck, honoraria for lectures from Merck and IBSA, and support for attending meetings from Merck, IBSA, and Ferring. Human Fatemi reports receiving research grants from Merck Serono and Organon; consulting fees from Ferring Global; speaker honoraria from Organon, Merck Serono, and Ferring; and participation in data safety monitoring or advisory board for Ferring. Sandro Esteves reports unrestricted research grants from Merck KGaA; reception of consulting fees from Merck, MeD.E.A, and event planet; reception of honoraria for lectures from Merck, MeD.E.A, and event planet; has a patent on the ART calculator, is an unpaid advisory board member for Nature Reviews and for Urology, Is the Head, Department of Education and Research, Brazilian Society of Urology (São Paulo section; unpaid), and is the Co-chair, Male Infertility Special Interest Group, WHO Infertility Guidelines (unpaid). Craig LaTasha is a site investigator for Ferring Pharmaceuticals. He was an advisory board member for Ferring Pharmaceuticals. Ariel Weissman, Christophe Blockeel, Christos Venetis, Seang Lin Tan, Michael Dahan, Bulent Urman, RJ Norman, Richard Paulson, and Ido Feferkorn report no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article the author’s name "LaTasha B. Craig" was incorrectly written as "C. LaTasha".

Supplementary information

ESM 1

(PDF 226 kb)

ESM 2

(DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feferkorn, I., Santos-Ribeiro, S., Ubaldi, F.M. et al. The HERA (Hyper-response Risk Assessment) Delphi consensus for the management of hyper-responders in in vitro fertilization. J Assist Reprod Genet 40, 2681–2695 (2023). https://doi.org/10.1007/s10815-023-02918-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02918-5

Keywords

Navigation