Skip to main content

Advertisement

Log in

Human germline nuclear transfer to overcome mitochondrial disease and failed fertilization after ICSI

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Providing additional insights on the efficacy of human nuclear transfer (NT). Here, and earlier, NT has been applied to minimize transmission risk of mitochondrial DNA (mtDNA) diseases. NT has also been proposed for treating infertility, but it is still unclear which infertility indications would benefit. In this work, we therefore additionally assess the applicability of NT to overcome failed fertilization.

Methods

Patient 1 carries a homoplasmic mtDNA mutation (m.11778G > A). Seventeen metaphase II (MII) oocytes underwent pre-implantation genetic testing (PGT), while five MII oocytes were used for spindle transfer (ST), and one in vitro matured (IVM) metaphase I oocyte underwent early pronuclear transfer (ePNT). Patients 2–3 experienced multiple failed intracytoplasmic sperm injection (ICSI) and ICSI-assisted oocyte activation (AOA) cycles. For these patients, the obtained MII oocytes underwent an additional ICSI-AOA cycle, while the IVM oocytes were subjected to ST.

Results

For patient 1, PGT-M confirmed mutation loads close to 100%. All ST-reconstructed oocytes fertilized and cleaved, of which one progressed to the blastocyst stage. The reconstructed ePNT-zygote reached the morula stage. These samples showed an average mtDNA carry-over rate of 2.9% ± 0.8%, confirming the feasibility of NT to reduce mtDNA transmission. For patient 2–3 displaying fertilization failure, ST resulted in, respectively, 4/5 and 6/6 fertilized oocytes, providing evidence, for the first time, that NT can enable successful fertilization in this patient population.

Conclusion

Our study showcases the repertoire of disorders for which NT can be beneficial, to overcome either mitochondrial disease transmission or failed fertilization after ICSI-AOA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data is available upon request.

Code availability

Not applicable.

References

  1. Craven L, Tang MX, Gorman GS, De Sutter P, Heindryckx B. Novel reproductive technologies to prevent mitochondrial disease. Hum Reprod Update. 2017;23(5):501–19.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang J, Liu H, Luo S, Lu Z, Chavez-Badiola A, Liu Z, et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online. 2017;34(4):361–8.

    Article  PubMed  Google Scholar 

  3. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, et al. Mitochondrial diseases Nat Rev Dis Primers. 2016;2:16080.

    Article  PubMed  Google Scholar 

  4. White SL, Collins VR, Wolfe R, Cleary MA, Shanske S, DiMauro S, et al. Genetic counseling and prenatal diagnosis for the mitochondrial DNA mutations at nucleotide 8993. Am J Hum Genet. 1999;65(2):474–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Laat P, Koene S, van den Heuvel LP, Rodenburg RJ, Janssen MC, Smeitink JA. Clinical features and heteroplasmy in blood, urine and saliva in 34 Dutch families carrying the m.3243A > G mutation. J Inherit Metab Dis. 2012;35(6):1059–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khan NA, Govindaraj P, Soumittra N, Sharma S, Srilekha S, Ambika S, et al. Leber’s Hereditary optic neuropathy-specific mutation m.11778G>A exists on diverse mitochondrial haplogroups in India. Invest Ophthalmol Vis Sci. 2017;58(10):3923–30.

    Article  CAS  PubMed  Google Scholar 

  7. Hauswirth WW, Laipis PJ. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci U S A. 1982;79(15):4686–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jansen RP, de Boer K. The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol. 1998;145(1–2):81–8.

    Article  CAS  PubMed  Google Scholar 

  9. Neupane J, Ghimire S, Vandewoestyne M, Lu Y, Gerris J, Van Coster R, et al. Cellular heterogeneity in the level of mtDNA heteroplasmy in mouse embryonic stem cells. Cell Rep. 2015;13(7):1304–9.

    Article  CAS  PubMed  Google Scholar 

  10. Sallevelt SC, Dreesen JC, Drusedau M, Hellebrekers DM, Paulussen AD, Coonen E, et al. PGD for the m.14487 T>C mitochondrial DNA mutation resulted in the birth of a healthy boy. Hum Reprod. 2017;32(3):698–703.

    CAS  PubMed  Google Scholar 

  11. Heindryckx B, Neupane J, Vandewoestyne M, Christodoulou C, Jackers Y, Gerris J, et al. Mutation-free baby born from a mitochondrial encephalopathy, lactic acidosis and stroke-like syndrome carrier after blastocyst trophectoderm preimplantation genetic diagnosis. Mitochondrion. 2014;18:12–7.

    Article  CAS  PubMed  Google Scholar 

  12. Neupane J, Vandewoestyne M, Heindryckx B, Ghimire S, Lu Y, Qian C, et al. A systematic analysis of the suitability of preimplantation genetic diagnosis for mitochondrial diseases in a heteroplasmic mitochondrial mouse model. Hum Reprod. 2014;29(4):852–9.

    Article  CAS  PubMed  Google Scholar 

  13. Herbert M, Turnbull D. Progress in mitochondrial replacement therapies. Nat Rev Mol Cell Biol. 2018;19(2):71–2.

    Article  CAS  PubMed  Google Scholar 

  14. Mitalipov S, Amato P, Parry S, Falk MJ. Limitations of preimplantation genetic diagnosis for mitochondrial DNA diseases. Cell Rep. 2014;7(4):935–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang M, Guggilla RR, Gansemans Y, Van der Jeught M, Boel A, Popovic M, et al. Comparative analysis of different nuclear transfer techniques to prevent the transmission of mitochondrial DNA variants. Mol Hum Reprod. 2019;25(12):797–810.

    CAS  PubMed  Google Scholar 

  16. Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L, Woodward J, et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 2009;461(7262):367–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang T, Sha H, Ji D, Zhang HL, Chen D, Cao Y, et al. Polar body genome transfer for preventing the transmission of inherited mitochondrial diseases. Cell. 2014;157(7):1591–604.

    Article  CAS  PubMed  Google Scholar 

  18. Ma H, Van Dyken C, Darby H, Mikhalchenko A, Marti-Gutierrez N, Koski A, et al. Germline transmission of donor, maternal and paternal mtDNA in primates. Human reproduction (Oxford, England). 2021;36(2):493–505.

    Article  CAS  Google Scholar 

  19. Zhang J, Liu H. Cytoplasm replacement following germinal vesicle transfer restores meiotic maturation and spindle assembly in meiotically arrested oocytes. Reprod Biomed Online. 2015;31(1):71–8.

    Article  PubMed  Google Scholar 

  20. Zhang J, Wang CW, Krey L, Liu H, Meng L, Blaszczyk A, et al. In vitro maturation of human preovulatory oocytes reconstructed by germinal vesicle transfer. Fertil Steril. 1999;71(4):726–31.

    Article  CAS  PubMed  Google Scholar 

  21. Ma H, O’Neil RC, Marti Gutierrez N, Hariharan M, Zhang ZZ, He Y, et al. Functional Human oocytes generated by transfer of polar body genomes. Cell Stem Cell. 2017;20(1):112–9.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang SP, Lu CF, Gong F, Xie PY, Hu L, Zhang SJ, et al. Polar body transfer restores the developmental potential of oocytes to blastocyst stage in a case of repeated embryo fragmentation. J Assist Reprod Genet. 2017;34(5):563–71.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL, Cree LM, et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature. 2010;465(7294):82-U9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hyslop LA, Blakeley P, Craven L, Richardson J, Fogarty NM, Fragouli E, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016;534(7607):383–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kang E, Wu J, Gutierrez NM, Koski A, Tippner-Hedges R, Agaronyan K, et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature. 2016;540(7632):270–5.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Zhuang GL, Zeng Y, Grifo J, Acosta C, Shu YM, et al. Pregnancy derived from human zygote pronuclear transfer in a patient who had arrested embryos after IVF. Reprod Biomed Online. 2016;33(4):529–33.

    Article  PubMed  Google Scholar 

  27. Wolf DP, Mitalipov N, Mitalipov S. Mitochondrial replacement therapy in reproductive medicine. Trends Mol Med. 2015;21(2):68–76.

    Article  CAS  PubMed  Google Scholar 

  28. Cardona Barberan A, Boel A, Vanden Meerschaut F, Stoop D, Heindryckx B. Diagnosis and treatment of male infertility-related fertilization failure. Journal of Clinical Medicine. 2020;9(12):3899.

    Article  CAS  PubMed Central  Google Scholar 

  29. Sang Q, Zhou Z, Mu J, Wang L. Genetic factors as potential molecular markers of human oocyte and embryo quality. J Assist Reprod Genet. 2021;38(5):993–1002.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bonte D, Ferrer-Buitrago M, Dhaenens L, Popovic M, Thys V, De Croo I, et al. Assisted oocyte activation significantly increases fertilization and pregnancy outcome in patients with low and total failed fertilization after intracytoplasmic sperm injection: a 17-year retrospective study. Fertil Steril. 2019;112(2):266–74.

    Article  PubMed  Google Scholar 

  31. VandenMeerschaut F, Nikiforaki D, De Gheselle S, Dullaerts V, Van den Abbeel E, Gerris J, et al. Assisted oocyte activation is not beneficial for all patients with a suspected oocyte-related activation deficiency. Hum Reprod. 2012;27(7):1977–84.

    Article  CAS  Google Scholar 

  32. Combelles CM, Morozumi K, Yanagimachi R, Zhu L, Fox JH, Racowsky C. Diagnosing cellular defects in an unexplained case of total fertilization failure. Human reproduction (Oxford, England). 2010;25(7):1666–71.

    Article  Google Scholar 

  33. Yang X, Shu L, Cai L, Sun X, Cui Y, Liu J. Homozygous missense mutation Arg207Cys in the WEE2 gene causes female infertility and fertilization failure. J Assist Reprod Genet. 2019;36(5):965–71.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dai J, Zheng W, Dai C, Guo J, Lu C, Gong F, et al. New biallelic mutations in WEE2: expanding the spectrum of mutations that cause fertilization failure or poor fertilization. Fertil Steril. 2019;111(3):510–8.

    Article  CAS  PubMed  Google Scholar 

  35. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242(4884):1427–30.

    Article  CAS  PubMed  Google Scholar 

  36. Jacobs LJ, de Wert G, Geraedts JP, de Coo IF, Smeets HJ. The transmission of OXPHOS disease and methods to prevent this. Hum Reprod Update. 2006;12(2):119–36.

    Article  CAS  PubMed  Google Scholar 

  37. Van Landuyt L, Verpoest W, Verheyen G, De Vos A, Van de Velde H, Liebaers I, et al. Closed blastocyst vitrification of biopsied embryos: evaluation of 100 consecutive warming cycles. Hum Reprod. 2011;26(2):316–22.

    Article  PubMed  Google Scholar 

  38. Heindryckx B, De Gheselle S, Gerris J, Dhont M, De Sutter P. Efficiency of assisted oocyte activation as a solution for failed intracytoplasmic sperm injection. Reprod Biomed Online. 2008;17(5):662–8.

    Article  PubMed  Google Scholar 

  39. Gardner DK, Schoolcraft WB. In vitro culture of human blastocysts. Toward reproductive certainty: Fertility and genetics beyond 1999 ed. London: Parthenon Publishing 1999;378–388.

  40. Heindryckx B, Van der Elst J, De Sutter P, Dhont M. Treatment option for sperm- or oocyte-related fertilization failure: assisted oocyte activation following diagnostic heterologous ICSI. Hum Reprod. 2005;20(8):2237–41.

    Article  CAS  PubMed  Google Scholar 

  41. Bonte D, Thys V, De Sutter P, Boel A, Leybaert L, Heindryckx B. Vitrification negatively affects the Ca(2+)-releasing and activation potential of mouse oocytes, but vitrified oocytes are potentially useful for diagnostic purposes. Reprod Biomed Online. 2020;40(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  42. De Leeneer K, Hellemans J, Steyaert W, Lefever S, Vereecke I, Debals E, et al. Flexible, scalable, and efficient targeted resequencing on a benchtop sequencer for variant detection in clinical practice. Hum Mutat. 2015;36(3):379–87.

    Article  PubMed  Google Scholar 

  43. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Breese MR, Liu Y. NGSUtils: a software suite for analyzing and manipulating next-generation sequencing datasets. Bioinformatics. 2013;29(4):494–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tytgat O, Tang MX, van Snippenberg W, Boel A, Guggilla RR, Gansemans Y, et al. Digital polymerase chain reaction for assessment of mutant mitochondrial carry-over after nuclear transfer for In Vitro Fertilization. Clin Chem. 2021;67(7):968–76.

    Article  PubMed  Google Scholar 

  46. Newman NJ, Lott MT, Wallace DC. The clinical characteristics of pedigrees of Leber’s hereditary optic neuropathy with the 11778 mutation. Am J Ophthalmol. 1991;111(6):750–62.

    Article  CAS  PubMed  Google Scholar 

  47. Puomila A, Viitanen T, Savontaus ML, Nikoskelainen E, Huoponen K. Segregation of the ND4/11778 and the ND1/3460 mutations in four heteroplasmic LHON families. J Neurol Sci. 2002;205(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  48. Bianco A, Bisceglia L, Trerotoli P, Russo L, D’Agruma L, Guerriero S, et al. Leber’s hereditary optic neuropathy (LHON) in an Apulian cohort of subjects. Acta Myol. 2017;36(3):163–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamada M, Emmanuele V, Sanchez-Quintero MJ, Sun B, Lallos G, Paull D, et al. Genetic drift can compromise mitochondrial replacement by nuclear transfer in human oocytes. Cell Stem Cell. 2016;18(6):749–54.

    Article  CAS  PubMed  Google Scholar 

  50. Wu K, Zhong C, Chen T, Zhang X, Tao W, Zhang J, et al. Polar bodies are efficient donors for reconstruction of human embryos for potential mitochondrial replacement therapy. Cell Res. 2017;27(8):1069–72.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pickett SJ, Blain A, Ng YS, Wilson IJ, Taylor RW, McFarland R, et al. Mitochondrial donation - which women could benefit? N Engl J Med. 2019;380(20):1971–2.

    Article  PubMed  Google Scholar 

  52. Gorman GS, Grady JP, Turnbull DM. Mitochondrial donation–how many women could benefit? N Engl J Med. 2015;372(9):885–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bhattacharya S, Maheshwari A, Mollison J. Factors associated with failed treatment: an analysis of 121,744 women embarking on their first IVF cycles. PLoS One. 2013;8(12):e82249.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Yan Z, Fan Y, Wang F, Yan Z, Li M, Ouyang J, et al. Novel mutations in PLCZ1 cause male infertility due to fertilization failure or poor fertilization. Hum Reprod. 2020;35(2):472–81.

    Article  CAS  PubMed  Google Scholar 

  55. Dai J, Zheng W, Dai C, Guo J, Lu C, Gong F, et al. New biallelic mutations in WEE2: expanding the spectrum of mutations that cause fertilization failure or poor fertilization. Fertil Steril. 2019;111(3):510–8.

    Article  CAS  PubMed  Google Scholar 

  56. Yang X, Shu L, Cai L, Sun X, Cui Y, Liu J. Homozygous missense mutation Arg207Cys in the WEE2 gene causes female infertility and fertilization failure. J Assist Reprod Genet. 2019;36(5):965–71.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Reynier P, May-Panloup P, Chretien MF, Morgan CJ, Jean M, Savagner F, et al. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod. 2001;7(5):425–9.

    Article  CAS  PubMed  Google Scholar 

  58. Tang M, Popovic M, Stamatiadis P, Van der Jeught M, Van Coster R, Deforce D, et al. Germline nuclear transfer in mice may rescue poor embryo development associated with advanced maternal age and early embryo arrest. Hum Reprod. 2020;35(7):1562–77.

    Article  CAS  PubMed  Google Scholar 

  59. Costa-Borges N, Spath K, Miguel-Escalada I, Mestres E, Balmaseda R, Serafin A, et al. Maternal spindle transfer overcomes embryo developmental arrest caused by ooplasmic defects in mice. Elife. 2020;9.

Download references

Acknowledgements

We thank the IVF lab team of the Department for Reproductive Medicine, Ghent University Hospital, for the collection of human oocytes.

Funding

This study was supported by grants from the China Scholarship Council (CSC) awarded to M.T. (Grant no. 201506160059) and Special Research Fund from Ghent University (Bijzonder Onderzoeksfonds, BOF) awarded to M.T. (Grant no. 01SC2916 and no. 01SC9518), the unrestricted educational grant of Ferring Pharmaceuticals (Aalst, Belgium), and multiple funds from FWO-Vlaanderen (Flemish fund for scientific research, Grant no. G051017N, G051516N and G1507816N). B.B. and A.C. are supported by FWO-Vlaanderen (Flemish fund for scientific research, Grant no. 11C2821N and 1S80222N, respectively).

Author information

Authors and Affiliations

Authors

Contributions

M.T., B.H., and A.B. designed and performed the experiments, collected and analyzed data, and wrote the manuscript. A.C.B., N.C., A.C., M.P., B.B., and F.V.M performed data acquisition and analysis. P.D.S., B.M., S.S., R.V.C., D.S., and P.C. conceived, designed, and supervised the experiments. All authors contributed to the interpretation of the results and revised the manuscript.

Corresponding author

Correspondence to Annekatrien Boel.

Ethics declarations

Ethics approval

The use of human oocytes/embryos was approved by the Ghent University Hospital Ethical Committee (EC 2016/0872) and the Belgian Federal Commission for medical and scientific research on embryos in vitro (FCE-ADV_071_UZ Gent).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Patients signed informed consent regarding publishing their data.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Maoxing Tang and Annekatrien Boel are shared first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 225 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, M., Boel, A., Castelluccio, N. et al. Human germline nuclear transfer to overcome mitochondrial disease and failed fertilization after ICSI. J Assist Reprod Genet 39, 609–618 (2022). https://doi.org/10.1007/s10815-022-02401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02401-7

Keywords

Navigation