Skip to main content
Log in

From contemplation to classification of chromosomal mosaicism in human preimplantation embryos

  • Opinion
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Chromosomal mosaicism is a hallmark of early human embryo development. The last decade yielded an enormous amount of information about diversity and prevalence of mosaicism in preimplantation embryos due to progress in preimplantation genetic testing of aneuploidies (PGT-A) based exclusively on molecular karyotyping of trophectoderm biopsy. However, the inner cell mass karyotype is still missing for mosaic embryos affecting the success rate of assisted reproductive medicine. Here, a classification model of chromosomal mosaicism is proposed based on the analysis of the primary zygote karyotype, the timing and types of primary and secondary chromosome segregation errors, and the distribution of mosaic cell clones between different embryonic and extraembryonic compartments of the blastocyst. Five basic principles for mosaicism analysis are introduced, namely, the estimation of the primary zygote karyotype, the investigation of additional sample point, the requirement of the second time point analysis, the delineating of reciprocity of chromosome segregation, and comprehensive chromosome screening at the single-cell level. The suggested model allows the prediction of the inner cell mass karyotype of the blastocyst and its developmental potential based on information from trophectoderm biopsy and non-invasive PGT-A using blastocoele fluid sample or spent culture medium as additional sample and time points for analysis and considering the reciprocity as a basic process in chromosome segregation errors between daughter cells in postzygotic cell divisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Penrose LS, Delhanty JDA. Triploid cell cultures from a macerated foetus. Lancet. 1961;277:1261–2. https://doi.org/10.1016/s0140-6736(61)92766-0.

    Article  Google Scholar 

  2. Carr DH. Chromosome studies in abortuses and stillborn infants. Lancet. 1963;282:603–6. https://doi.org/10.1016/s0140-6736(63)90396-9.

    Article  Google Scholar 

  3. Warburton D, Yu C, Kline J, Stein Z. Mosaic autosomal trisomy in cultures from spontaneous abortions. Am J Hum Genet. 1978;30:609–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kalousek D, Dill F. Chromosomal mosaicism confined to the placenta in human conceptions. Science. 1983;221:665–7. https://doi.org/10.1126/science.6867735.

    Article  CAS  PubMed  Google Scholar 

  5. Kalousek DK, Barrette IJ, Gärtner AB. Spontaneous abortion and confined chromosomal mosaicism. Hum Genet. 1992;88:642–6. https://doi.org/10.1007/bf02265289.

    Article  CAS  PubMed  Google Scholar 

  6. Griffin DK, Millie EA, Redline RW, Hassold TJ, Zaragoza MV. Cytogenetic analysis of spontaneous abortions: comparison of techniques and assessment of the incidence of confined placental mosaicism. Am J Med Genet. 1997;72:297–301. https://doi.org/10.1002/(sici)1096-8628(19971031)72:3<297::aid-ajmg9>3.0.co;2-o.

    Article  CAS  PubMed  Google Scholar 

  7. Lebedev IN, Ostroverkhova NV, Nikitina TV, Sukhanova NN, Nazarenko SA. Features of chromosomal abnormalities in spontaneous abortion cell culture failures detected by interphase FISH analysis. Eur J Hum Genet. 2004;12:513–20. https://doi.org/10.1038/sj.ejhg.5201178.

    Article  CAS  PubMed  Google Scholar 

  8. Hahnemann JM, Vejerslev LO. European collaborative research on mosaicism in CVS (EUCROMIC)—fetal and extrafetal cell lineages in 192 gestations with CVS mosaicism involving single autosomal trisomy. Am J Med Genet. 1997;70:179–87. https://doi.org/10.1002/(sici)1096-8628(19970516)70:2<179::aid-ajmg15>3.0.co;2-g.

    Article  CAS  PubMed  Google Scholar 

  9. Kalousek DK. Pathogenesis of chromosomal mosaicism and its effect on early human development. Am J Hum Genet. 2000;91:39–45. https://doi.org/10.1002/(sici)1096-8628(20000306)91:1<39::aid-ajmg7>3.0.co;2-l.

    Article  CAS  Google Scholar 

  10. Martínez-Glez V, Tenorio J, Nevado J, Gordo G, Rodríguez-Laguna L, Feito M, de Lucas R, Pérez-Jurado LA, Ruiz Pérez VL, Torrelo A, Spinner NB, Happle R, Biesecker LG, Lapunzina P. A six-attribute classification of genetic mosaicism. Genet Med. 2020;22:1743–57. https://doi.org/10.1038/s41436-020-0877-3.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wolstenholme J. Confined placental mosaicism for trisomies 2, 3, 7, 8, 9, 16 and 22: their incidence, likely origins and mechanisms for cell lineage compartmentalization. Prenat Diagn. 1996;16:511–24. https://doi.org/10.1002/(sici)1097-0223(199606)16:6<511::aid-pd904>3.0.co;2-8.

    Article  CAS  PubMed  Google Scholar 

  12. Lebedev I. Mosaic aneuploidy in early fetal losses. Cytogenet Genome Res. 2011;133:169–83. https://doi.org/10.1159/000324120.

    Article  CAS  PubMed  Google Scholar 

  13. Vorsanova SG, Kolotii AD, Iourov IY, Monakhov VV, Kirillova EA, Soloviev IV, Yurov YB. Evidence for high frequency of chromosomal mosaicism in spontaneous abortions revealed by interphase FISH analysis. J Histochem Cytochem. 2005;53:375–80. https://doi.org/10.1369/jhc.4a6424.2005.

    Article  CAS  PubMed  Google Scholar 

  14. Levy B, Sigurjonsson S, Pettersen B, Maisenbacher MK, Hall MP, Demko Z, Lathi RB, Tao R, Aggarwal V, Rabinowitz M. Genomic imbalance in products of conception: single-nucleotide polymorphism chromosomal microarray analysis. Obstet Gynecol. 2014;124:202–9. https://doi.org/10.1097/aog.0000000000000325.

    Article  CAS  PubMed  Google Scholar 

  15. McGowan-Jordan J, Hastings RJ, Moore S. An international system for human cytogenomic nomenclature. Cytogenet Genome Res. 2020;160:341–503. https://doi.org/10.1159/isbn.978-3-318-06867-2.

  16. Gleicher N, Patrizio P, Brivanlou A. Preimplantation genetic testing for aneuploidy – a castle built on sand. Trends Mol Med. 2021;27:731–42. https://doi.org/10.1016/j.molmed.2020.11.009.

    Article  CAS  PubMed  Google Scholar 

  17. McCoy RC. Mosaicism in preimplantation human embryos: when chromosomal abnormalities are the norm. Trends Genet. 2017;33:448–63. https://doi.org/10.1016/j.tig.2017.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Starostik MR, Sosina OA, McCoy RC. Single-cell analysis of human embryos reveals diverse patterns of aneuploidy and mosaicism. Genome Res. 2020;30:814–25. https://doi.org/10.1101/gr.262774.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Munné S, Sandalinas M, Escudero T, Márquez C, Cohen J. Chromosome mosaicism in cleavage-stage human embryos: evidence of a maternal age effect. Reprod BioMed Online. 2002;4:223–32. https://doi.org/10.1016/s1472-6483(10)61810-x.

    Article  PubMed  Google Scholar 

  20. Delhanty JDA, Harper JC, Ao A, Handyside AH, Winston RML. Multicolour FISH detects frequent chromosomal mosaicism and chaotic division in normal preimplantation embryos from fertile patients. Hum Genet. 1997;99:755–60. https://doi.org/10.1007/s004390050443.

    Article  CAS  PubMed  Google Scholar 

  21. Gleicher N, Vidali A, Braverman J, Kushnir VA, Barad DH, Hudson C, Wu Y-G, Wang Q, Zhang L, Albertini DF, International P. G. S. Consortium Study Group. Accuracy of preimplantation genetic screening (PGS) is compromised by degree of mosaicism of human embryos. Reprod Biol Endocrinol. 2016;14:54. https://doi.org/10.1186/s12958-016-0193-6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gleicher N, Kushnir VA, Barad DH. Is it time for a paradigm shift in understanding embryo selection? Reprod Biol Endocrinol. 2015;13:3. https://doi.org/10.1186/1477-7827-13-3.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tortoriello DV, Dayal M, Beyhan Z, Yakut T, Keskintepe L. Reanalysis of human blastocysts with different molecular genetic screening platforms reveals significant discordance in ploidy status. J Assist Reprod Genet. 2016;33:1467–71. https://doi.org/10.1007/s10815-016-0766-5.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Evsikov S, Verlinsky Y. Mosaicism in the inner cell mass of human blastocysts. Hum Reprod. 1998;13:3151–5. https://doi.org/10.1093/humrep/13.11.3151.

    Article  CAS  PubMed  Google Scholar 

  25. Vera-Rodriguez M, Rubio C. Assessing the true incidence of mosaicism in preimplantation embryos. Fertil Steril. 2017;107:1107–12. https://doi.org/10.1016/j.fertnstert.2017.03.019.

    Article  PubMed  Google Scholar 

  26. Johnson DS, Cinnioglu C, Ross R, Filby A, Gemelos G, Hill M, Ryan A, Smotrich D, Rabinowitz M, Murray MJ. Comprehensive analysis of karyotypic mosaicism between trophectoderm and inner cell mass. Mol Hum Reprod. 2010;16:944–9. https://doi.org/10.1093/molehr/gaq062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fragouli E, Lenzi M, Ross R, Katz-Jaffe M, Schoolcraft WB, Wells D. Comprehensive molecular cytogenetic analysis of the human blastocyst stage. Hum Reprod. 2008;23:2596–608. https://doi.org/10.1093/humrep/den287.

    Article  CAS  PubMed  Google Scholar 

  28. Orvieto R, Shuly Y, Brengauz M, Feldman B. Should pre-implantation genetic screening be implemented to routine clinical practice? Gynecol Endocrinol. 2016;32:506–8. https://doi.org/10.3109/09513590.2016.1142962.

    Article  PubMed  Google Scholar 

  29. Huang J, Yan L, Lu S, Zhao N, Qiao J. Re-analysis of aneuploidy blastocysts with an inner cell mass and different regional trophectoderm cells. J Assist Reprod Genet. 2017;34:487–93. https://doi.org/10.1007/s10815-017-0875-9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tšuiko O, Zhigalina DI, Jatsenko T, Skryabin NA, Kanbekova OR, Artyukhova VG, Svetlakov AV, Teearu K, Trošin A, Salumets A, Kurg A, Lebedev IN. Karyotype of the blastocoel fluid demonstrates low concordance with both trophectoderm and inner cell mass. Fertil and Steril. 2018;109:1127–34.e1. https://doi.org/10.1016/j.fertnstert.2018.02.008.

    Article  Google Scholar 

  31. Baranov VS, Kogan IY, Kuznetzova TV. Advances in developmental genetics and achievements in assisted reproductive technology. Russ J Genet. 2019;55:1171–82. https://doi.org/10.1134/s1022795419100028.

    Article  CAS  Google Scholar 

  32. Forsberg LA, Gisselsson D, Dumanski JP. Mosaicism in health and disease — clones picking up speed. Nat Rev Genet. 2016;18:128–42. https://doi.org/10.1038/nrg.2016.145.

    Article  CAS  PubMed  Google Scholar 

  33. Greco E, Minasi MG, Fiorentino F. Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N Engl J Med. 2015;373:2089–90. https://doi.org/10.1056/nejmc1500421.

    Article  PubMed  Google Scholar 

  34. Lledó B, Morales R, Ortiz JA, Blanca H, Ten J, Llácer J, Bernabeu R. Implantation potential of mosaic embryos. Syst Biol Reprod Med. 2017;63:206–8. https://doi.org/10.1080/19396368.2017.1296045.

    Article  PubMed  Google Scholar 

  35. Spinella F, Fiorentino F, Biricik A, Bono S, Ruberti A, Cotroneo E, Baldi M, Cursio E, Minasi MG, Greco E. Extent of chromosomal mosaicism influences the clinical outcome of in vitro fertilization treatments. Fertil Steril. 2018;109:77–83. https://doi.org/10.1016/j.fertnstert.2017.09.025.

    Article  PubMed  Google Scholar 

  36. Fragouli E, Alfarawati S, Spath K, Babariya D, Tarozzi N, Borini A, Wells D. Analysis of implantation and ongoing pregnancy rates following the transfer of mosaic diploid–aneuploid blastocysts. Hum Genet. 2017;136:805–19. https://doi.org/10.1007/s00439-017-1797-4.

    Article  CAS  PubMed  Google Scholar 

  37. Victor AR, Tyndall JC, Brake AJ, Lepkowsky LT, Murphy AE, Griffin DK, McCoy RC, Barnes FL, Zouves CG, Viotti M. One hundred mosaic embryos transferred prospectively in a single clinic: exploring when and why they result in healthy pregnancies. Fertil Steril. 2019;111:280–93. https://doi.org/10.1016/j.fertnstert.2018.10.019.

    Article  PubMed  Google Scholar 

  38. Munné S, Spinella F, Grifo J, Zhang J, Beltran MP, Fragouli E, Fiorentino F. Clinical outcomes after the transfer of blastocysts characterized as mosaic by high resolution next generation sequencing-further insights. Eur J Med Genet. 2020;63:103741. https://doi.org/10.1016/j.ejmg.2019.103741.

    Article  PubMed  Google Scholar 

  39. Hong B, Hao Y. The outcome of human mosaic aneuploid blastocysts after intrauterine transfer: a retrospective study. Medicine. 2020;99:e18768. https://doi.org/10.1097/MD.0000000000018768.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kahraman S, Cetinkaya M, Yuksel B, Yesil M, Cetinkaya CP. The birth of a baby with mosaicism resulting from a known mosaic embryo transfer: a case report. Hum Reprod. 2020;35:727–33. https://doi.org/10.1093/humrep/dez309.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fragouli E, Alfarawati S, Daphnis DD, Goodall NN, Mania A, Griffiths T, Gordon A, Wells D. Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: scientific data and technical evaluation. Hum Reprod. 2011;26:480–90. https://doi.org/10.1093/humrep/deq344.

    Article  CAS  PubMed  Google Scholar 

  42. Capalbo A, Wright G, Elliott T, Ubaldi FM, Rienzi L, Nagy ZP. FISH reanalysis of inner cell mass and trophectoderm samples of previously array-CGH screened blastocysts shows high accuracy of diagnosis and no major diagnostic impact of mosaicism at the blastocyst stage. Hum Reprod. 2013;28:2298–307. https://doi.org/10.1093/humrep/det245.

    Article  CAS  PubMed  Google Scholar 

  43. Chuang TH, Hsieh JY, Lee MJ, Lai HH, Hsieh CL, Wang HL, Chang YJ, Chen SU. Concordance between different trophectoderm biopsy sites and the inner cell mass of chromosomal composition measured with a next-generation sequencing platform. Mol Hum Reprod. 2018;24:593–601. https://doi.org/10.1093/molehr/gay043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gianaroli L, Magli MC, Pomante A, Crivello AM, Cafueri G, Valerio M, Ferraretti AP. Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study. Fertil Steril. 2014;102:1692–9.e6. https://doi.org/10.1016/j.fertnstert.2014.08.021

  45. Huang L, Bogale B, Tang Y, Lu S, Xie XS, Racowsky C. Non-invasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. Proc Natl Acad Sci U S A. 2019;116:14105–12. https://doi.org/10.1073/pnas.1907472116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuznyetsov V, Madjunkova S, Antes R, Abramov R, Motamedi G, Ibarrientos Z, Librach C. Evaluation of a novel non-invasive preimplantation genetic screening approach. PLoS One. 2018;13:e0197262. https://doi.org/10.1371/journal.pone.0197262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lawrenz B, El Khatib I, Liñán A, Bayram A, Arnanz A, Chopra R, De Munck N, Fatemi HM. The clinicians’ dilemma with mosaicism—an insight from inner cell mass biopsies. Hum Reprod 2019;34:998–1010. https://doi.org/10.1093/humrep/dez055

  48. Lin PY, Lee CI, Cheng EH, Huang CC, Lee TH, Shih HH, Pai YP, Chen YC, Lee MS. Clinical outcomes of single mosaic embryo transfer: high-level or low-level mosaic embryo, does it matter? J Clin Med. 2020;9:1695. https://doi.org/10.3390/jcm9061695.

    Article  PubMed Central  Google Scholar 

  49. Navratil R, Horak J, Hornak M, Kubicek D, Balcova M, Tauwinklova G, Travnik P, Vesela K. Concordance of various chromosomal errors among different parts of the embryo and the value of re-biopsy in embryos with segmental aneuploidies. Mol Hum Reprod. 2020;26:269–76. https://doi.org/10.1093/molehr/gaaa012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Northrop LE, Treff NR, Levy B, Scott RT. SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod. 2010;16:590–600. https://doi.org/10.1093/molehr/gaq037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ou Z, Chen Z, Yin M, Deng Y, Liang Y, Wang W, Yao Y, Sun L. Re-analysis of whole blastocysts after trophectoderm biopsy indicated chromosome aneuploidy. Hum Genomics. 2020;14:3. https://doi.org/10.1186/s40246-019-0253-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Popovic M, Dheedene A, Christodoulou C, Taelman J, Dhaenens L, Van Nieuwerburgh F, Deforce D, Van den Abbeel E, De Sutter P, Menten B, Heindryckx B. Chromosomal mosaicism in human blastocysts: the ultimate challenge of preimplantation genetic testing? Hum Reprod. 2018;33:1342–54. https://doi.org/10.1093/humrep/dey106.

    Article  CAS  PubMed  Google Scholar 

  53. Sachdev NM, McCulloh DH, Kramer Y, Keefe D, Grifo JA. The reproducibility of trophectoderm biopsies in euploid, aneuploid, and mosaic embryos using independently verified next-generation sequencing (NGS): a pilot study. J Assist Reprod Genet. 2020;37:559–71. https://doi.org/10.1007/s10815-020-01720-x.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tobler KJ, Zhao Y, Ross R, Benner AT, Xu X, Du L, Broman K, Thrift K, Brezina PR, Kearns WG. Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis. Fertil Steril. 2015;104:418–25. https://doi.org/10.1016/j.fertnstert.2015.04.028.

    Article  CAS  PubMed  Google Scholar 

  55. Vera-Rodriguez M, Diez-Juan A, Jimenez-Almazan J, Martinez S, Navarro R, Peinado V, Mercader A, Meseguer M, Blesa D, Moreno I, Valbuena D, Rubio C, Simon C. Origin and composition of cell-free DNA in spent medium from human embryo culture during preimplantation development. Hum Reprod. 2018;33:745–56. https://doi.org/10.1093/humrep/dey028.

    Article  CAS  PubMed  Google Scholar 

  56. Victor AR, Griffin DK, Brake AJ, Tyndall JC, Murphy AE, Lepkowsky LT, Lal A, Zouves CG, Barnes FL, McCoy RC, Viotti M. Assessment of aneuploidy concordance between clinical trophectoderm biopsy and blastocyst. Hum Reprod. 2019;34:181–92. https://doi.org/10.1093/humrep/dey327.

    Article  CAS  PubMed  Google Scholar 

  57. Xu J, Fang R, Chen L, Chen D, Xiao J-P, Yang W, Wang H, Song X, Ma T, Bo S, Shi C, Ren J, Huang L, Cai L-Y, Yao B, Xie XS, Lu S. Non-invasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proc Natl Acad Sci U S A. 2016;113:11907–12. https://doi.org/10.1073/pnas.1613294113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chow JFC, Yeung WSB, Lau EYL, Lee VCY, Ng EHY, Ho PC. Array comparative genomic hybridization analyses of all blastomeres of a cohort of embryos from young IVF patients revealed significant contribution of mitotic errors to embryo mosaicism at the cleavage stage. Reprod Biol Endocrinol. 2014;12:105. https://doi.org/10.1186/1477-7827-12-105.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, Debrock S, Amyere M, Vikkula M, Schuit F, Fryns JP, Verbeke G, D'Hooghe T, Moreau Y, Vermeesch JR. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009;15:577–83. https://doi.org/10.1038/nm.1924.

    Article  CAS  PubMed  Google Scholar 

  60. Daphnis DD, Delhanty JDA, Jerkovic S, Geyer J, Craft I, Harper JC. Detailed FISH analysis of day 5 human embryos reveals the mechanisms leading to mosaic aneuploidy. Hum Reprod. 2005;20:129–37. https://doi.org/10.1093/humrep/deh554.

    Article  CAS  PubMed  Google Scholar 

  61. Goodrich D, Tao X, Bohrer C, Lonczak A, Xing T, Zimmerman R, Zhan Y, Scott RT, Treff NR. A randomized and blinded comparison of qPCR and NGS-based detection of aneuploidy in a cell line mixture model of blastocyst biopsy mosaicism. J Assist Reprod Genet. 2016;33:1473–80. https://doi.org/10.1007/s10815-016-0784-3.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rule KN, Chosed RJ, Chang TA, Robinson RD, Wininger JD, Roudebush W. Blastocoel cell-free DNA, a marker of embryonic quality. Fertil Steril. 2017;108:e106. https://doi.org/10.1016/j.fertnstert.2017.07.32.

    Article  Google Scholar 

  63. Taylor TH, Griffin DK, Katz SL, Crain JL, Johnson L, Gitlin S. Technique to ‘map’ chromosomal mosaicism at the blastocyst stage. Cytogenet Genome Res. 2016;149:262–6. https://doi.org/10.1159/000449051.

    Article  CAS  PubMed  Google Scholar 

  64. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2:280–91. https://doi.org/10.1038/35066065.

    Article  CAS  PubMed  Google Scholar 

  65. Kuliev A, Zlatopolsky Z, Kirillova I, Spivakova J, Janzen JC. Meiosis errors in over 20,000 oocytes studied in the practice of preimplantation aneuploidy testing. Reprod BioMed Online. 2011;22:2–8. https://doi.org/10.1016/j.rbmo.2010.08.014.

    Article  PubMed  Google Scholar 

  66. Leaver M, Wells D. Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics? Hum Reprod Update. 2020;26:16–42. https://doi.org/10.1093/humupd/dmz033.

    Article  CAS  PubMed  Google Scholar 

  67. Rule K, Chosed RJ, Chang TA, Wininger JD, Roudebush WE. Relationship between blastocoel cell-free DNA and day-5 blastocyst morphology. J Assist Reprod Genet. 2018;35:1497–501. https://doi.org/10.1007/s10815-018-1223-4.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yang Z, Salem SA, Liu X, Kuang Y, Salem RD, Liu J. Selection of euploid blastocysts for cryopreservation with array comparative genomic hybridization (aCGH) results in increased implantation rates in subsequent frozen and thawed embryo transfer cycles. Mol Cytogenet. 2013;6:32. https://doi.org/10.1186/1755-8166-6-32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bolton H, Graham SJL, Van der Aa N, Kumar P, Theunis K, Gallardo EF, Voet T, Zernicka-Goetz M. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun. 2016;7:11165. https://doi.org/10.1038/ncomms11165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Copp A. Interaction between inner cell mass and trophectoderm of the mouse blastocyst. I. A study of cellular proliferation. J Embryol Exp Morpholog. 1978;48:109–25.

    CAS  Google Scholar 

  71. Handyside AH, Hunter S. Cell division and death in the mouse blastocyst before implantation. Rouxs Arch Dev Biol. 1986;195:519–26. https://doi.org/10.1007/bf00375893

  72. Hardy K, Handyside AH. Metabolism and cell allocation during parthenogenetic preimplantation mouse development. Mol Reprod Dev. 1996;43:313–22. https://doi.org/10.1002/(sici)1098-2795(199603)43:3<313::aid-mrd5>3.0.co;2-t.

    Article  CAS  PubMed  Google Scholar 

  73. Brison DR, Schultz RM. Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor alpha. Biol Reprod. 1997;56:1088–96. https://doi.org/10.1095/biolreprod56.5.1088.

    Article  CAS  PubMed  Google Scholar 

  74. Yang M, Rito T, Metzger J, Naftaly J, Soman R, Hu J, Albertini DF, Barad DH, Brivanlou AH, Gleicher N. Depletion of aneuploid cells in human embryos and gastruloids. Nat Cell Biol. 2021;23(4):314–21. https://doi.org/10.1038/s41556-021-00660-7.

    Article  CAS  PubMed  Google Scholar 

  75. Hardy K, Handyside AH, Winston RML. The human blastocyst: cell number, death and allocation during late preimplantation development in vitro. Development. 1989;107:597–604.

    Article  CAS  Google Scholar 

  76. Barbash-Hazan S, Frumkin T, Malcov M, Yaron Y, Cohen T, Azem F, Amit A, Ben-Yosef D. Preimplantation aneuploid embryos undergo self-correction in correlation with their developmental potential. Fertil Steril. 2009;92:890–6. https://doi.org/10.1016/j.fertnstert.2008.07.1761.

    Article  CAS  PubMed  Google Scholar 

  77. Santos MA, Teklenburg G, Macklon NS, Van Opstal D, Schuring-Blom GH, Krijtenburg PJ, de Vreeden-Elbertse J, Fauser BC, Baart EB. The fate of the mosaic embryo: chromosomal constitution and development of Day 4, 5 and 8 human embryos. Hum Reprod. 2010;25:1916–26. https://doi.org/10.1093/humrep/deq139.

    Article  PubMed  Google Scholar 

  78. Los FJ, Van Opstal D, van Den Berg C. The development of cytogenetically normal, abnormal and mosaic embryos: a theoretical model. Hum Reprod Update. 2004;10:79–94. https://doi.org/10.1093/humupd/dmh005.

    Article  PubMed  Google Scholar 

  79. Bielanska M, Tan SL, Ao A. Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type, and relevance to embryo outcome. Hum Reprod. 2002;17:413–9. https://doi.org/10.1093/humrep/17.2.413.

    Article  PubMed  Google Scholar 

  80. Gonzalez-Merino E, Emiliani S, Vassart G, Van den Bergh M, Vannin AS, Abramowicz M, Delneste D, Englert Y. Incidence of chromosomal mosaicism in human embryos at different developmental stages analyzed by fluorescence in situ hybridization. Genet Test. 2003;7:85–95. https://doi.org/10.1089/109065703322146768.

    Article  PubMed  Google Scholar 

  81. Magli MC, Albanese C, Crippa A, Tabanelli C, Ferraretti AP, Gianaroli L. Deoxyribonucleic acid detection in blastocoelic fluid: a new predictor of embryo ploidy and viable pregnancy. Fertil Steril. 2019;111:77–85. https://doi.org/10.1016/j.fertnstert.2018.09.016.

    Article  CAS  PubMed  Google Scholar 

  82. Gianaroli L, Albanese C, Tabanelli C, Crippa A, Magli MC. Blastocoel fluid biopsy. Fertil Reprod. 2019;1:17–20. https://doi.org/10.1142/s2661318219300034.

    Article  Google Scholar 

  83. Delhanty JDA. The origins of genetic variation between individual human oocytes and embryos: implications for infertility. Hum Fertil. 2013;16:241–5. https://doi.org/10.3109/14647273.2013.843792.

    Article  Google Scholar 

  84. Los FJ, Van Opstal D, Van Den Berg C, Braat APG, Verhoef S, Swaay EWV, Van Den Ouweland AMW, Halley DJJ. Uniparental disomy with and without confined placental mosaicism: a model for trisomic zygote rescue. Prenat Diagn. 1998;18:659–68. https://doi.org/10.1002/(sici)1097-0223(199807)18:7<659::aid-pd317>3.0.co;2-k.

    Article  CAS  PubMed  Google Scholar 

  85. Tarín JJ, Conaghan J, Winston RML, Handyside AH. Human embryo biopsy on the 2nd day after insemination for preimplantation diagnosis: removal of a quarter of embryo retards cleavage. Fertil Steril. 1992;58:970–6. https://doi.org/10.1016/s0015-0282(16)55444-2.

    Article  PubMed  Google Scholar 

  86. Esfandiari N, Bunnell ME, Casper RF. Human embryo mosaicism: did we drop the ball on chromosomal testing? J Assist Reprod Genet. 2016;33:1439–44. https://doi.org/10.1007/s10815-016-0797-y.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lightfoot DA, Kouznetsova A, Mahdy E, Wilbertz J, Höög C. The fate of mosaic aneuploid embryos during mouse development. Dev Biol. 2006;289:384–94. https://doi.org/10.1016/j.ydbio.2005.11.001.

    Article  CAS  PubMed  Google Scholar 

  88. Zhigalina DI, Skryabin NA, Artyukhova VG, Svetlakov AV, Lebedev IN. Correction of the embryonic karyotype at the preimplantation stage of human development. Med Genet (Russ). 2020;19:49–50. https://doi.org/10.25557/2073-7998.2020.03.49-50

  89. Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73:1155–8. https://doi.org/10.1016/s0015-0282(00)00518-5.

    Article  CAS  PubMed  Google Scholar 

  90. Preimplantation Genetic Diagnosis International Society. PGDIS position statement on chromosome mosaicism and preimplantation aneuploidy testing at the blastocyst stage. 2016. http://www.pgdis.org/docs/newsletter_071816.html. Accessed 22 Mar 2021.

  91. Grati FR, Gallazzi G, Branca L, Maggi F, Simoni G, Yaron Y. An evidence-based scoring system for prioritizing mosaic aneuploid embryos following preimplantation genetic screening. Reprod BioMed Online. 2018;36:442–9. https://doi.org/10.1016/j.rbmo.2018.01.005.

    Article  PubMed  Google Scholar 

  92. Gleicher N, Barad DH, Ben-Rafael Z, Glujovsky D, Mochizuki L, Modi D, Murtinger M, Patrizio P, Orvieto R, Takahashi S, Weghofer A, Ziebe S. International Do No Harm Group in IVF (IDNHG-IVF). Commentary on two recently published formal guidelines on management of “mosaic” embryos after preimplantation genetic testing for aneuploidy (PGT-A). Reprod Biol Endocrinol. 2021;19(1):1–6. https://doi.org/10.1186/s12958-021-00716-1.

    Article  Google Scholar 

  93. Sachdev NM, Maxwell SM, Besser AG, Grifo JA. Diagnosis and clinical management of embryonic mosaicism. Fertil Steril. 2017;107:6–11. https://doi.org/10.1016/j.fertnstert.2016.10.006.

    Article  PubMed  Google Scholar 

  94. Perloe M, Welch C, Morton P, Venier W, Wells D, Palini S. Validation of blastocoele fluid aspiration for preimplantation genetic screening using array comparative genomic hybridization (aCGH). Fertil Steril. 2013;100:S208. https://doi.org/10.1016/j.fertnstert.2013.07.1384.

    Article  Google Scholar 

  95. Ben-Nagi J, Odia R, Gonzalez X, Heath C, Babariya D, SenGupta S, Serhal P, Wells D. The first ongoing pregnancy following comprehensive aneuploidy assessment using a combined blastocenetesis, cell free DNA and trophectoderm biopsy strategy. J Reprod Infertil. 2019;20:57–62.

    PubMed  PubMed Central  Google Scholar 

  96. Shah JS, Venturas M, Sanchez TH, Penzias AS, Needleman D, Sakkas D. Non-invasive metabolic imaging with fluorescence lifetime imaging microscopy (FLIM) detects differences in ploidy of human blastocysts. Fertil Steril. 2020;114:e76–7. https://doi.org/10.1016/j.fertnstert.2020.08.235.

    Article  Google Scholar 

  97. Tolmacheva EN, Vasilyev SA, Lebedev IN. Aneuploidy and DNA methylation as mirrored features of early human embryo development. Genes. 2020;11:1084. https://doi.org/10.3390/genes11091084.

    Article  CAS  PubMed Central  Google Scholar 

  98. Deglincerti A, Croft GF, Pietila LN, Zernicka-Goetz M, Siggia ED, Brivanlou AH. Self-organization of the in vitro attached human embryo. Nature. 2016;533:251–4. https://doi.org/10.1038/nature17948.

    Article  CAS  PubMed  Google Scholar 

  99. Popovic M, Dhaenens L, Taelman J, Dheedene A, Bialecka M, De Sutter P, de Sousa Lopes SMC, Menten B, Heindryckx B. Extended in vitro culture of human embryos demonstrates the complex nature of diagnosing chromosomal mosaicism from a single trophectoderm biopsy. Hum Reprod. 2019;34:758–69. https://doi.org/10.1093/humrep/dez012.

    Article  CAS  PubMed  Google Scholar 

  100. Kime C, Kiyonari H, Ohtsuka S, Kohbayashi E, Asahi M, Yamanaka S, Takahashi M, Tomoda K. Induced 2C expression and implantation-competent blastocyst-like cysts from primed pluripotent stem cells. Stem Cell Rep. 2019;13:485–98. https://doi.org/10.1016/j.stemcr.2019.07.011.

    Article  CAS  Google Scholar 

  101. Liu X, Tan JP, Schröder J, Aberkane A, Ouyang JF, Mohenska M, Lim SM, Sun YBY, Chen J, Sun G, Zhou Y, Poppe D, Lister R, Clark AT, Rackham OJL, Zenker J, Polo JM. Modelling human blastocysts by reprogramming fibroblasts into iBlastoids. Nature. 2021;591:627–32. https://doi.org/10.1038/s41586-021-03372-y.

    Article  CAS  PubMed  Google Scholar 

  102. Yu L, Wei Y, Duan J, Schmitz DA, Sakurai M, Wang L, Wang K, Zhao S, Hon GC, Wu J. Blastocyst-like structures generated from human pluripotent stem cells. Nature. 2021;591:620–6. https://doi.org/10.1038/s41586-021-03356-y.

    Article  CAS  PubMed  Google Scholar 

  103. Albertini DF. Building likenesses of human blastocysts: friend or folly. J Assist Reprod Genet. 2021;38(4):757-758. https://doi.org/10.1007/s10815-021-02190-5 \

  104. Bershteyn M, Hayashi Y, Desachy G, Hsiao EC, Sami S, Tsang KM, Weiss LA, Kriegstein AR, Yamanaka S, Wynshaw-Boris A. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells. Nature. 2014;507:99–103. https://doi.org/10.1038/nature12923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nikitina TV, Kashevarova AA, Gridina MM, Lopatkina ME, Khabarova AA, Yakovleva YS, Menzorov AG, Minina YA, Pristyazhnyuk IE, Vasilyev SA, Fedotov DA, Serov OL, Lebedev IN. Complex biology of constitutional ring chromosomes structure and (in)stability revealed by somatic cell reprogramming. Sci Rep. 2021;11:4325. https://doi.org/10.1038/s41598-021-83399-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hassold T, Maylor-Hagen H, Wood A, Gruhn J, Hoffmann E, Broman KW, Hunt P. Failure to recombine is a common feature of human oogenesis. Am J Hum Genet. 2021;108:16–24. https://doi.org/10.1016/j.ajhg.2020.11.010.

    Article  CAS  PubMed  Google Scholar 

  107. Yeoh MH, Chen JJ, Sinthamoney E, Wong PS. The relationship between chromosomal mosaicism and maternal age in embryos tested with next generation sequencing (NGS) platform. Reprod BioMed Online. 2019;38:e54. https://doi.org/10.1016/j.rbmo.2019.03.08.

    Article  Google Scholar 

  108. Chan CW, Lee CSS, Yap WY, Lim YX. Impact of maternal age on mosaicism rate in preimplantation embryos. A retrospective study. Reprod BioMed Online. 2019;38:e39–40. https://doi.org/10.1016/j.rbmo.2019.03.065.

    Article  Google Scholar 

  109. Gleicher N, Metzger J, Croft G, Kushnir VA, Albertini DF, Barad DH. A single trophectoderm biopsy at blastocyst stage is mathematically unable to determine embryo ploidy accurately enough for clinical use. Reprod Biol Endocrinol. 2017;15(1):33. https://doi.org/10.1186/s12958-017-0251-8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project № 20-74-00064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor N. Lebedev.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 38 kb)

ESM 2

(PNG 2624 kb)

10815_2021_2304_MOESM2_ESM.tif

Origin and distribution of chromosomal mosaicism in embryos developed from the monosomic zygote due to mitotic non-disjunction (TIF 971 kb)

ESM 3

(PNG 1832 kb)

10815_2021_2304_MOESM3_ESM.tif

Fig.S2 Origin and distribution of chromosomal mosaicism in embryos developed from the monosomic zygote due to anaphase lagging (TIF 794 kb)

ESM 4

(PNG 4955 kb)

10815_2021_2304_MOESM4_ESM.tif

Fig.S3 Origin and distribution of chromosomal mosaicism in embryos developed from the euploid zygote due to mitotic non-disjunction (TIF 1.49 mb)

ESM 5

(PNG 3753 kb)

10815_2021_2304_MOESM5_ESM.tif

Fig.S4 Origin and distribution of chromosomal mosaicism in embryos developed from the euploid zygote due to anaphase lagging (TIF 1.17 mb)

ESM 6

(PNG 3435 kb)

10815_2021_2304_MOESM6_ESM.tif

Fig.S5 Origin and distribution of chromosomal mosaicism in embryos developed from the trisomic zygote due to mitotic non-disjunction (TIF 1.22 mb)

ESM 7

(PNG 5595 kb)

10815_2021_2304_MOESM7_ESM.tif

Fig.S6 Origin and distribution of chromosomal mosaicism in embryos developed from the trisomic zygote due to anaphase lagging (TIF 1.66 mb)

ESM 8

(PNG 1952 kb)

10815_2021_2304_MOESM8_ESM.tif

Fig.S7 Origin and distribution of chromosomal mosaicism in embryos developed from the tetrasomic zygote due to mitotic non-disjunction (TIF 791 kb)

ESM 9

(PNG 2227 kb)

10815_2021_2304_MOESM9_ESM.tif

Fig.S8 Origin and distribution of chromosomal mosaicism in embryos developed from the tetrasomic zygote due to anaphase lagging (TIF 866 kb)

ESM 10

(PNG 1304 kb)

Fig.S9 (TIF 793 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, I.N., Zhigalina, D.I. From contemplation to classification of chromosomal mosaicism in human preimplantation embryos. J Assist Reprod Genet 38, 2833–2848 (2021). https://doi.org/10.1007/s10815-021-02304-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02304-z

Keywords

Navigation