Skip to main content
Log in

On the origin of zygosity and chorionicity in twinning: evidence from human in vitro fertilization

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Assisted reproduction is presumed to increase monozygotic twin rates, with the possible contribution of laboratory and medical interventions. Monozygotic dichorionic gestations are supposed to originate from the splitting of an embryo during the first four days of development, before blastocyst formation. Single embryo transfers could result in dichorionic pregnancies, currently explained by embryo splitting as described in the worldwide used medical textbooks, or concomitant conception. However, such splitting has never been observed in human in vitro fertilization, and downregulated frozen cycles could also produce multiple gestations. Several models of the possible origins of dichorionicity have been suggested. However, some possible underlying mechanisms observed from assisted reproduction seem to have been overlooked. In this review, we aimed to document the current knowledge, criticize the accepted dogma, and propose new insights into the origin of zygosity and chorionicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2019, with permission from Elsevier (5,095,301,230,968).

Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Jha P, Morgan TA, Kennedy A. US evaluation of twin pregnancies: importance of chorionicity and amnionicity. Radiographics. 2019;39(7):2146–66.

    Article  PubMed  Google Scholar 

  2. Vega M, et al. Not all twins are monozygotic after elective single embryo transfer: analysis of 32,600 elective single embryo transfer cycles as reported to the Society for Assisted Reproductive Technology. Fertil Steril. 2018;109(1):118–22.

    Article  PubMed  Google Scholar 

  3. Boomsma D, Busjahn A, Peltonen L. Classical twin studies and beyond. Nat Rev Genet. 2002;3(11):872–82.

    Article  CAS  PubMed  Google Scholar 

  4. Hall JG. Twinning. Lancet. 2003;362(9385):735–43.

    Article  PubMed  Google Scholar 

  5. Corner GW. The observed embryology of human single-ovum twins and other multiple births. Am J Obstet Gynecol. 1955;70(5):933–51.

    Article  CAS  PubMed  Google Scholar 

  6. Cunningham F, et al. Williams obstetrics (24e). New York: McGraw-Hill; 2014.

  7. Gilbert S. Developmental biology (10e). Sunderland MA: Sinauer Associates Inc.; 2014.

  8. Tong S, Vollenhoven B, Meagher S. Determining zygosity in early pregnancy by ultrasound. Ultrasound Obstet Gynecol. 2004;23(1):36–7.

    Article  CAS  PubMed  Google Scholar 

  9. Scardo JA, Ellings JM, Newman RB. Prospective determination of chorionicity, amnionicity, and zygosity in twin gestations. Am J Obstet Gynecol. 1995;173(5):1376–80.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng J, et al. Effective noninvasive zygosity determination by maternal plasma target region sequencing. PLoS One. 2013;8(6):e65050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zou Z, et al. Unusual twinning: additional findings during prenatal diagnosis of twin zygosity by single nucleotide polymorphism (SNP) array. Prenat Diagn. 2018;38(6):428–34.

    Article  CAS  PubMed  Google Scholar 

  12. Blickstein I, Keith LG. On the possible cause of monozygotic twinning: lessons from the 9-banded armadillo and from assisted reproduction. Twin Res Hum Genet. 2007;10(2):394–9.

    Article  PubMed  Google Scholar 

  13. Hall JG. Twins and twinning. Am J Med Genet. 1996;61(3):202–4.

    Article  CAS  PubMed  Google Scholar 

  14. Baldwin VJ. Anomalous development of twins. In: Pathology of multiple pregnancy. Springer; 1994. p. 169–97.

    Chapter  Google Scholar 

  15. Steinman G, Valderrama E. Mechanisms of twinning. III. Placentation, calcium reduction and modified compaction. J Reprod Med. 2001;46(11):995–1002.

    CAS  PubMed  Google Scholar 

  16. Blickstein I. Estimation of iatrogenic monozygotic twinning rate following assisted reproduction: pitfalls and caveats. Am J Obstet Gynecol. 2005;192(2):365–8.

    Article  PubMed  Google Scholar 

  17. Van de Velde H, et al. The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod. 2008;23(8):1742–7.

    Article  PubMed  Google Scholar 

  18. da Costa AA, et al. Monozygotic twins and transfer at the blastocyst stage after ICSI. Hum Reprod. 2001;16(2):333–6.

    Article  Google Scholar 

  19. Milki AA, et al. Incidence of monozygotic twinning with blastocyst transfer compared to cleavage-stage transfer. Fertil Steril. 2003;79(3):503–6.

    Article  PubMed  Google Scholar 

  20. Kanter JR, et al. Trends and correlates of monozygotic twinning after single embryo transfer. Obstet Gynecol. 2015;125(1):111–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ding J, et al. The effect of blastocyst transfer on newborn sex ratio and monozygotic twinning rate: an updated systematic review and meta-analysis. Reprod Biomed Online. 2018;37(3):292–303.

    Article  PubMed  Google Scholar 

  22. Mateizel I, et al. Do ARTs affect the incidence of monozygotic twinning? Hum Reprod. 2016;31(11):2435–41.

    Article  CAS  PubMed  Google Scholar 

  23. Hviid KVR, et al. Determinants of monozygotic twinning in ART: a systematic review and a meta-analysis. Hum Reprod Update. 2018;24(4):468–83.

    Article  PubMed  Google Scholar 

  24. Healey SC, et al. Height discordance in monozygotic females is not attributable to discordant inactivation of X-linked stature determining genes. Twin Res. 2001;4(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  25. Hattori H, et al. The risk of secondary sex ratio imbalance and increased monozygotic twinning after blastocyst transfer: data from the Japan Environment and Children’s Study. Reprod Biol Endocrinol. 2019;17(1):27.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Busnelli A, et al. Risk factors for monozygotic twinning after in vitro fertilization: a systematic review and meta-analysis. Fertil Steril. 2019;111(2):302–17.

    Article  PubMed  Google Scholar 

  27. McLaughlin JE, et al. Does assisted hatching affect live birth in fresh, first cycle in vitro fertilization in good and poor prognosis patients? J Assist Reprod Genet. 2019;36(12):2425–33.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ikemoto Y, et al. Prevalence and risk factors of zygotic splitting after 937 848 single embryo transfer cycles. Hum Reprod. 2018;33(11):1984–91.

    Article  CAS  PubMed  Google Scholar 

  29. Franasiak JM, et al. Blastocyst transfer is not associated with increased rates of monozygotic twins when controlling for embryo cohort quality. Fertil Steril. 2015;103(1):95–100.

    Article  PubMed  Google Scholar 

  30. Knopman JM, et al. What makes them split? Identifying risk factors that lead to monozygotic twins after in vitro fertilization. Fertil Steril. 2014;102(1):82–9.

    Article  PubMed  Google Scholar 

  31. Liu X, Shi J. Maternal age is associated with embryo splitting after single embryo transfer: a retrospective cohort study. J Assist Reprod Genet. 2021;38(1):79–83.

    Article  PubMed  Google Scholar 

  32. Xu S, et al. High grade trophectoderm is associated with monozygotic twinning in frozen-thawed single blastocyst transfer. Arch Gynecol Obstet. 2021;304:271–7.

    Article  PubMed  Google Scholar 

  33. Sobek A Jr, et al. High incidence of monozygotic twinning after assisted reproduction is related to genetic information, but not to assisted reproduction technology itself. Fertil Steril. 2015;103(3):756–60.

    Article  PubMed  Google Scholar 

  34. Song B, et al. Prevalence and risk factors of monochorionic diamniotic twinning after assisted reproduction: a six-year experience base on a large cohort of pregnancies. PLoS One. 2017;12(11):e0186813.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kamath MS, Antonisamy B, Sunkara SK. Zygotic splitting following embryo biopsy: a cohort study of 207 697 single-embryo transfers following IVF treatment. BJOG. 2020;127(5):562–9.

    Article  CAS  PubMed  Google Scholar 

  36. Wu D, et al. Monozygotic twinning after in vitro fertilization/intracytoplasmic sperm injection treatment is not related to advanced maternal age, intracytoplasmic sperm injection, assisted hatching, or blastocyst transfer. Taiwan J Obstet Gynecol. 2014;53(3):324–9.

    Article  PubMed  Google Scholar 

  37. Vaughan DA, et al. Clustering of monozygotic twinning in IVF. J Assist Reprod Genet. 2016;33(1):19–26.

    Article  PubMed  Google Scholar 

  38. Behr B, Milki AA. Visualization of atypical hatching of a human blastocyst in vitro forming two identical embryos. Fertil Steril. 2003;80(6):1502–3.

    Article  PubMed  Google Scholar 

  39. Shibuya Y, Kyono K. A successful birth of healthy monozygotic dichorionic diamniotic (DD) twins of the same gender following a single vitrified-warmed blastocyst transfer. J Assist Reprod Genet. 2012;29(3):255–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kyono K. The precise timing of embryo splitting for monozygotic dichorionic diamniotic twins: when does embryo splitting for monozygotic dichorionic diamniotic twins occur? Evidence for splitting at the morula/blastocyst stage from studies of in vitro fertilization. Twin Res Hum Genet. 2013;16(4):827–32.

    Article  PubMed  Google Scholar 

  41. Li H, Shen T, Sun X. Monozygotic dichorionic-diamniotic pregnancies following single frozen-thawed blastocyst transfer: a retrospective case series. BMC Pregnancy Childbirth. 2020;20(1):768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sundaram V, Ribeiro S, Noel M. Multi-chorionic pregnancies following single embryo transfer at the blastocyst stage: a case series and review of the literature. J Assist Reprod Genet. 2018;35(12):2109–17.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kawachiya S, et al. Incidence of dichorionic diamniotic twins after single blastocyst transfer. Fertil Steril. 2008;90:S68.

    Article  Google Scholar 

  44. Kyono K, et al. When is the actual splitting time of the embryo to develop a monozygotic dichorionic diamniotic (DD) twins following a single embryo transfer? Fertil Steril. 2011;96(3):S275.

    Article  Google Scholar 

  45. Tocino A, et al. Monozygotic twinning after assisted reproductive technologies: a case report of asymmetric development and incidence during 19 years in an international group of in vitro fertilization clinics. Fertil Steril. 2015;103(5):1185–9.

    Article  PubMed  Google Scholar 

  46. Kallen CB. Fraternal twins after elective single-embryo transfers: a lesson in never saying “never.” Fertil Steril. 2018;109(1):63.

    Article  PubMed  Google Scholar 

  47. van der Hoorn ML, et al. Dizygotic twin pregnancy after transfer of one embryo. Fertil Steril. 2011;95(2):805.e1-3.

    Article  Google Scholar 

  48. Osianlis T, et al. Incidence and zygosity of twin births following transfers using a single fresh or frozen embryo. Hum Reprod. 2014;29(7):1438–43.

    Article  CAS  PubMed  Google Scholar 

  49. Takehara I, et al. Dizygotic twin pregnancy after single embryo transfer: a case report and review of the literature. J Assist Reprod Genet. 2014;31(4):443–6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sugawara N, et al. Sex-discordant twins despite single embryo transfer: a report of two cases. Reprod Med Biol. 2010;9(3):169–72.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bettio D, et al. 45, X product of conception after preimplantation genetic diagnosis and euploid embryo transfer: evidence of a spontaneous conception confirmed by DNA fingerprinting. Reprod Biol Endocrinol. 2016;14(1):55.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Konno H, et al. The incidence of dichorionic diamniotic twin pregnancy after single blastocyst embryo transfer and zygosity: 8 years of single-center experience. Twin Res Hum Genet. 2020;23(1):51–4.

    Article  PubMed  Google Scholar 

  53. Machin GA. Some causes of genotypic and phenotypic discordance in monozygotic twin pairs. Am J Med Genet. 1996;61(3):216–28.

    Article  CAS  PubMed  Google Scholar 

  54. Jonsson H, et al. Differences between germline genomes of monozygotic twins. Nat Genet. 2021;53(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  55. Boklage CE. Traces of embryogenesis are the same in monozygotic and dizygotic twins: not compatible with double ovulation. Hum Reprod. 2009;24(6):1255–66.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Boklage CE. The organization of the oocyte and embryogenesis in twinning and fusion malformations. Acta Genet Med Gemellol (Roma). 1987;36(3):421–31.

    Article  CAS  Google Scholar 

  57. Herranz G. The timing of monozygotic twinning: a criticism of the common model. Zygote. 2015;23(1):27–40.

    Article  PubMed  Google Scholar 

  58. McNamara HC, et al. A review of the mechanisms and evidence for typical and atypical twinning. Am J Obstet Gynecol. 2016;214(2):172–91.

    Article  PubMed  Google Scholar 

  59. Gardner RL. The timing of monozygotic twinning: a pro-life challenge to conventional scientific wisdom. Reprod Biomed Online. 2014;28(3):276–8.

    Article  CAS  PubMed  Google Scholar 

  60. Denker HW. Comment on G. Herranz: The timing of monozygotic twinning: a criticism of the common model. Zygote (2013). Zygote. 2015;23(2):312–4.

    Article  PubMed  Google Scholar 

  61. Scott L. The origin of monozygotic twinning. Reprod Biomed Online. 2002;5(3):276–84.

    Article  PubMed  Google Scholar 

  62. Liu S, et al. Four-generation pedigree of monozygotic female twins reveals genetic factors in twinning process by whole-genome sequencing. Twin Res Hum Genet. 2018;21(5):361–8.

    Article  PubMed  Google Scholar 

  63. Vázquez Rodríguez S, et al. Sex-discordant monochorionic dizygotic twins: a case report. J Obstet Gynaecol. 2018;38(2):279–81.

    Article  PubMed  Google Scholar 

  64. Uysal N, et al. Fetal sex discordance in a monochorionic twin pregnancy following intracytoplasmic sperm injection: a case report of chimerism and review of the literature. J Obstet Gynaecol Res. 2018;44(3):576–82.

    Article  PubMed  Google Scholar 

  65. Rodriguez-Buritica D, et al. Sex-discordant monochorionic twins with blood and tissue chimerism. Am J Med Genet A. 2015;167a(4):872–7.

    Article  PubMed  Google Scholar 

  66. Lee HJ, et al. Monochorionic dizygotic twins with discordant sex and confined blood chimerism. Eur J Pediatr. 2014;173(9):1249–52.

    Article  CAS  PubMed  Google Scholar 

  67. Souter VL, et al. A report of dizygous monochorionic twins. N Engl J Med. 2003;349(2):154–8.

    Article  PubMed  Google Scholar 

  68. Turrina S, et al. Monozygotic twins: identical or distinguishable for science and law? Med Sci Law. 2021;61(1_suppl):62–6.

    Article  PubMed  Google Scholar 

  69. Rolf B, Krawczak M. The germlines of male monozygotic (MZ) twins: very similar, but not identical. Forensic Sci Int Genet. 2021;50:102408.

    Article  CAS  PubMed  Google Scholar 

  70. Barnes-Davis ME, Cortezzo DE. Two cases of atypical twinning: phenotypically discordant monozygotic and conjoined twins. Clin Case Rep. 2019;7(5):920–5.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yamashita S, et al. Analysis of 122 triplet and one quadruplet pregnancies after single embryo transfer in Japan. Reprod Biomed Online. 2020;40(3):374–80.

    Article  CAS  PubMed  Google Scholar 

  72. Dziadosz M, Evans MI. Re-thinking elective single embryo transfer: increased risk of monochorionic twinning - a systematic review. Fetal Diagn Ther. 2017;42(2):81–91.

    Article  PubMed  Google Scholar 

  73. Yan Z, et al. Eight-shaped hatching increases the risk of inner cell mass splitting in extended mouse embryo culture. PLoS ONE. 2015;10(12):e0145172–e0145172.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gu YF, et al. Inner cell mass incarceration in 8-shaped blastocysts does not increase monozygotic twinning in preimplantation genetic diagnosis and screening patients. PLoS One. 2018;13(1):e0190776.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Noli L, et al. Developmental clock compromises human twin model created by embryo splitting. Hum Reprod. 2015;30(12):2774–84.

    PubMed  Google Scholar 

  76. Bos-Mikich A. Monozygotic twinning in the IVF era: is it time to change existing concepts? J Assist Reprod Genet. 2018;35(12):2119–20.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Noli L, et al. Discordant growth of monozygotic twins starts at the blastocyst stage: a case study. Stem cell reports. 2015;5(6):946–53.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sills ES, Tucker MJ, Palermo GD. Assisted reproductive technologies and monozygous twins: implications for future study and clinical practice. Twin Res. 2000;3(4):217–23.

    Article  CAS  PubMed  Google Scholar 

  79. Sutherland K, et al. Time-lapse imaging of inner cell mass splitting with monochorionic triamniotic triplets after elective single embryo transfer: a case report. Reprod Biomed Online. 2019;38(4):491–6.

    Article  PubMed  Google Scholar 

  80. Otsuki J, et al. Grade and looseness of the inner cell mass may lead to the development of monochorionic diamniotic twins. Fertil Steril. 2016;106(3):640–4.

    Article  PubMed  Google Scholar 

  81. Carson DD, et al. Embryo implantation. Dev Biol. 2000;223(2):217–37.

    Article  CAS  Google Scholar 

  82. Ruane PT, et al. Trophectoderm differentiation to invasive syncytiotrophoblast is induced by endometrial epithelial cells during human embryo implantation. bioRxiv. Preprint. 2020. https://doi.org/10.1101/2020.10.02.323659.

  83. Rossant J, Tam PPL. New insights into early human development: lessons for stem cell derivation and differentiation. Cell Stem Cell. 2017;20(1):18–28.

    Article  CAS  PubMed  Google Scholar 

  84. Niakan KK, Eggan K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol. 2013;375(1):54–64.

    Article  CAS  PubMed  Google Scholar 

  85. Ralston A, Rossant J. Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol. 2008;313(2):614–29.

    Article  CAS  PubMed  Google Scholar 

  86. Palmieri SL, et al. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev Biol. 1994;166(1):259–67.

    Article  CAS  PubMed  Google Scholar 

  87. De Paepe C, et al. Human trophectoderm cells are not yet committed. Hum Reprod. 2013;28(3):740–9.

    Article  PubMed  Google Scholar 

  88. Suwińska A, et al. Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos. Dev Biol. 2008;322(1):133–44.

    Article  PubMed  Google Scholar 

  89. Cummins L, Koch J, Kilani S. Live birth resulting from a conjoined oocyte confirmed as euploid using array CGH: a case report. Reprod Biomed Online. 2016;32(1):62–5.

    Article  PubMed  Google Scholar 

  90. Magdi Y. Dizygotic twin from conjoined oocytes: a case report. J Assist Reprod Genet. 2020;37(6):1367–70.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rosenbusch B, Hancke K. Conjoined human oocytes observed during assisted reproduction: description of three cases and review of the literature. Rom J Morphol Embryol. 2012;53(1):189–92.

    CAS  PubMed  Google Scholar 

  92. Papadaki L. Binovular follicles in the adult human ovary. Fertil Steril. 1978;29(3):342–50.

    Article  CAS  PubMed  Google Scholar 

  93. Ron-El R, et al. Binovular human ovarian follicles associated with in vitro fertilization: incidence and outcome. Fertil Steril. 1990;54(5):869–72.

    Article  CAS  PubMed  Google Scholar 

  94. Safran A, et al. Intracytoplasmic sperm injection allows fertilization and development of a chromosomally balanced embryo from a binovular zona pellucida. Hum Reprod. 1998;13(9):2575–8.

    Article  CAS  PubMed  Google Scholar 

  95. Vicdan K, et al. Fertilization and development of a blastocyst-stage embryo after selective intracytoplasmic sperm injection of a mature oocyte from a binovular zona pellucida: a case report. J Assist Reprod Genet. 1999;16(7):355–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Turkalj B, Kotanidis L, Nikolettos N. Binovular complexes after ovarian stimulation. A report of four cases Hippokratia. 2013;17(2):169–70.

    CAS  PubMed  Google Scholar 

  97. Yano K, et al. Repeated collection of conjoined oocytes from a patient with polycystic ovary syndrome, resulting in one successful live birth from frozen thawed blastocyst transfer: a case report. J Assist Reprod Genet. 2017;34(11):1547–52.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kanda T, Ogawa M, Sato K. Confined blood chimerism in monochorionic dizygotic twins conceived spontaneously. AJP Rep. 2013;3(1):33–6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Figure 2 is reprinted from “Time-lapse imaging of inner cell mass splitting with monochorionic triamniotic triplets after elective single embryo transfer: a case report”, Vol 38/Issue 4, K. Sutherland, J. Leitch, H. Lyall, and B. J. Woodward, Pages 491–496, Copyright 2019, with permission from Elsevier (5,095,301,230,968).

We would like to thank Halil Ruso and Süreyya Melil for providing the images for Fig. 3.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Enver Kerem Dirican.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Enver Kerem Dirican and Safak Olgan are contributed equally this work as principal investigators

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dirican, E.K., Olgan, S. On the origin of zygosity and chorionicity in twinning: evidence from human in vitro fertilization. J Assist Reprod Genet 38, 2809–2816 (2021). https://doi.org/10.1007/s10815-021-02294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02294-y

Keywords

Navigation